作者
Meiping Gao,Wenwen Liu,Hailin Wang,Xia Shao,Aijun Shi,Xiaoshuan An,Guohao Li,Lei Nie
摘要
Adhesive application in indoor decoration is an important anthropogenic volatile organic compound (VOC) emission source of both indoors and outdoors. However, few studies have been conducted on VOC emission factors and characteristics from indoor decorating adhesives. In this study, the VOC emission factors were obtained by measurement of VOCs in 210 adhesives. The results showed that the VOC emission factors were 41.23 g/L for wall and ground solidify, 33.49 g/L for tile adhesive, 76.88 g/L for white glue, 52.36 g/L for wallcovering adhesive, 132.28 g/L for sealant glue, 49.33 g/kg for foaming adhesive, 654.23 g/L for all-purpose adhesive, 251.93 g/L for free nails adhesive, 152.01 g/L for marble glue, and 136.79 g/L for beautiful sealant. Methodology for calculating activity data of decorating adhesive consumptions was developed and a VOC emission inventory from adhesive application in indoor decoration was developed using a bottom-up estimation methodology. The VOC emissions from 2012 to 2017 in China were 235,987.76, 246,230.47, 250,981.62, 249,849.48, 227,150.33 and 212, 433.07 t, respectively. The beautiful sealant, wall and ground solidify, sealant glue and all-purpose adhesive contributed the most of the total emissions, collectively accounting for 78.14%. Shandong, Jiangsu, Zhejiang, Sichuan and Guangdong ranked as the top five provinces for VOC emissions, together contributing 39.10% to the national total emissions. Shandong and Jiangsu reached up to 17,057.95 t/year and 15,207.92 t/year, respectively. Priority should be given to four types of adhesives with pretty high VOC contents for designing effective VOC control measures, including solvent-based all-purpose adhesive, solvent-based free nails adhesive, solvent-based sealant glue, and solvent-based beautiful sealant. Future emission trends are projected through 2030 based on current emission control policies and real estate trend. It may be possible to reduce VOC emissions by 60.81% and 69.37% by 2030 under the two scenarios, respectively, compared with the VOC emissions in 2017.