Transfer Learning with Dynamic Adversarial Adaptation Network

对抗制 计算机科学 鉴别器 人工智能 学习迁移 领域(数学分析) 机器学习 域适应 适应(眼睛) 深度学习 数学 分类器(UML) 光学 物理 数学分析 探测器 电信
作者
Chaohui Yu,Jindong Wang,Yiqiang Chen,Mei‐Yu Huang
出处
期刊:International Conference on Data Mining 被引量:211
标识
DOI:10.1109/icdm.2019.00088
摘要

The recent advances in deep transfer learning reveal that adversarial learning can be embedded into deep networks to learn more transferable features to reduce the distribution discrepancy between two domains. Existing adversarial domain adaptation methods either learn a single domain discriminator to align the global source and target distributions, or pay attention to align subdomains based on multiple discriminators. However, in real applications, the marginal (global) and conditional (local) distributions between domains are often contributing differently to the adaptation. There is currently no method to dynamically and quantitatively evaluate the relative importance of these two distributions for adversarial learning. In this paper, we propose a novel Dynamic Adversarial Adaptation Network (DAAN) to dynamically learn domain-invariant representations while quantitatively evaluate the relative importance of global and local domain distributions. To the best of our knowledge, DAAN is the first attempt to perform dynamic adversarial distribution adaptation for deep adversarial learning. DAAN is extremely easy to implement and train in real applications. We theoretically analyze the effectiveness of DAAN, and it can also be explained in an attention strategy. Extensive experiments demonstrate that DAAN achieves better classification accuracy compared to state-of-the-art deep and adversarial methods. Results also imply the necessity and effectiveness of the dynamic distribution adaptation in adversarial transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枝念之年发布了新的文献求助10
刚刚
3秒前
3秒前
小蘑菇应助wanfei采纳,获得10
3秒前
英姑应助ZHOUJING采纳,获得10
5秒前
6秒前
香蕉觅云应助nenoaowu采纳,获得10
7秒前
缥缈笑天完成签到 ,获得积分10
9秒前
meetland完成签到,获得积分10
11秒前
XIAXIAXIA发布了新的文献求助10
11秒前
ding应助轩xuan采纳,获得10
11秒前
12秒前
xdy关注了科研通微信公众号
12秒前
12秒前
环糊精完成签到,获得积分20
13秒前
wanfei完成签到,获得积分10
13秒前
共享精神应助111采纳,获得10
15秒前
kcck发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
18秒前
19秒前
Ava应助August采纳,获得10
20秒前
wanfei发布了新的文献求助10
20秒前
充电宝应助ZHOUJING采纳,获得10
20秒前
21秒前
饱满破茧完成签到,获得积分10
23秒前
俞渝发布了新的文献求助30
23秒前
Owen应助笨笨从凝采纳,获得10
23秒前
23秒前
24秒前
爱静静应助务实的听筠采纳,获得10
24秒前
26秒前
HH完成签到,获得积分10
26秒前
学术安陵容完成签到,获得积分10
27秒前
温暖南莲应助零九采纳,获得30
27秒前
111发布了新的文献求助10
27秒前
hsy发布了新的文献求助10
28秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150257
求助须知:如何正确求助?哪些是违规求助? 2801405
关于积分的说明 7844390
捐赠科研通 2458892
什么是DOI,文献DOI怎么找? 1308773
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721