Transfer Learning with Dynamic Adversarial Adaptation Network

对抗制 计算机科学 鉴别器 人工智能 学习迁移 领域(数学分析) 机器学习 域适应 适应(眼睛) 深度学习 数学 电信 数学分析 物理 探测器 分类器(UML) 光学
作者
Chaohui Yu,Jindong Wang,Yiqiang Chen,Mei‐Yu Huang
标识
DOI:10.1109/icdm.2019.00088
摘要

The recent advances in deep transfer learning reveal that adversarial learning can be embedded into deep networks to learn more transferable features to reduce the distribution discrepancy between two domains. Existing adversarial domain adaptation methods either learn a single domain discriminator to align the global source and target distributions, or pay attention to align subdomains based on multiple discriminators. However, in real applications, the marginal (global) and conditional (local) distributions between domains are often contributing differently to the adaptation. There is currently no method to dynamically and quantitatively evaluate the relative importance of these two distributions for adversarial learning. In this paper, we propose a novel Dynamic Adversarial Adaptation Network (DAAN) to dynamically learn domain-invariant representations while quantitatively evaluate the relative importance of global and local domain distributions. To the best of our knowledge, DAAN is the first attempt to perform dynamic adversarial distribution adaptation for deep adversarial learning. DAAN is extremely easy to implement and train in real applications. We theoretically analyze the effectiveness of DAAN, and it can also be explained in an attention strategy. Extensive experiments demonstrate that DAAN achieves better classification accuracy compared to state-of-the-art deep and adversarial methods. Results also imply the necessity and effectiveness of the dynamic distribution adaptation in adversarial transfer learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求知发布了新的文献求助10
1秒前
璐璐姐最牛逼完成签到,获得积分10
1秒前
左丽君完成签到,获得积分10
2秒前
2秒前
2秒前
受伤迎波应助El采纳,获得10
2秒前
ZKL完成签到,获得积分10
2秒前
SCS发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
lindadsl完成签到,获得积分10
3秒前
4秒前
1234发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
万能图书馆应助qqqq采纳,获得30
7秒前
微笑爆米花应助自信的采纳,获得10
7秒前
fahbfafajk完成签到,获得积分10
7秒前
追光者发布了新的文献求助10
8秒前
Ann发布了新的文献求助10
8秒前
开心网络完成签到 ,获得积分10
8秒前
左丽君发布了新的文献求助10
8秒前
10秒前
高兴的小完成签到,获得积分10
10秒前
如意2023发布了新的文献求助10
10秒前
11秒前
shutong完成签到,获得积分10
12秒前
霸气乐菱发布了新的文献求助10
12秒前
12秒前
李健的小迷弟应助井子肉采纳,获得10
12秒前
赘婿应助求知采纳,获得10
12秒前
Owen应助Ann采纳,获得10
14秒前
14秒前
烟花应助苦行僧采纳,获得10
14秒前
在水一方应助su采纳,获得10
15秒前
ceeray23应助Dean采纳,获得200
15秒前
我吃小饼干完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572586
求助须知:如何正确求助?哪些是违规求助? 4658232
关于积分的说明 14721857
捐赠科研通 4598413
什么是DOI,文献DOI怎么找? 2523791
邀请新用户注册赠送积分活动 1494485
关于科研通互助平台的介绍 1464549