化学
质子耦合电子转移
电子转移
动力学同位素效应
反应速率常数
协同反应
质子
化学物理
光化学
静水压力
热力学
计算化学
物理化学
动力学
原子物理学
氘
有机化学
催化作用
物理
量子力学
作者
Tianfei Liu,Robin Tyburski,Shihuai Wang,Ricardo Fernández‐Terán,Sascha Ott,Leif Hammarström
摘要
Proton-coupled electron transfer (PCET) was studied in a series of tungsten hydride complexes with pendant pyridyl arms ([(PyCH2Cp)WH(CO)3], PyCH2Cp = pyridylmethylcyclopentadienyl), triggered by laser flash-generated RuIII-tris-bipyridine oxidants, in acetonitrile solution. The free energy dependence of the rate constant and the kinetic isotope effects (KIEs) showed that the PCET mechanism could be switched between concerted and the two stepwise PCET mechanisms (electron-first or proton-first) in a predictable fashion. Straightforward and general guidelines for how the relative rates of the different mechanisms depend on oxidant and base are presented. The rate of the concerted reaction should depend symmetrically on changes in oxidant and base strength, that is on the overall ΔG0PCET, and we argue that an "asynchronous" behavior would not be consistent with a model where the electron and proton tunnel from a common transition state. The observed rate constants and KIEs were examined as a function of hydrostatic pressure (1–2000 bar) and were found to exhibit qualitatively different dependence on pressure for different PCET mechanisms. This is discussed in terms of different volume profiles of the PCET mechanisms as well as enhanced proton tunneling for the concerted mechanism. The results allowed for assignment of the main mechanism operating in the different cases, which is one of the critical questions in PCET research. They also show how the rate of a PCET reaction will be affected very differently by changes of oxidant and base strength, depending on which mechanism dominates. This is of fundamental interest as well as of practical importance for rational design of, for example, catalysts for fuel cells and solar fuel formation, which operate in steps of PCET reactions. The mechanistic richness shown by this system illustrates that the specific mechanism is not intrinsic to a specific synthetic catalyst or enzyme active site but depends on the reaction conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI