已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy

数据库 药品 药物发现 计算机科学 生物信息学 生物 药理学
作者
Hui Liu,Wenhao Zhang,Bo Zou,Jinxian Wang,Yuanyuan Deng,Lei Deng
出处
期刊:Nucleic Acids Research [Oxford University Press]
被引量:184
标识
DOI:10.1093/nar/gkz1007
摘要

Drug combinations have demonstrated high efficacy and low adverse side effects compared to single drug administration in cancer therapies and thus have drawn intensive attention from researchers and pharmaceutical enterprises. Due to the rapid development of high-throughput screening (HTS), the number of drug combination datasets available has increased tremendously in recent years. Therefore, there is an urgent need for a comprehensive database that is crucial to both experimental and computational screening of synergistic drug combinations. In this paper, we present DrugCombDB, a comprehensive database devoted to the curation of drug combinations from various data sources: (i) HTS assays of drug combinations; (ii) manual curations from the literature; and (iii) FDA Orange Book and external databases. Specifically, DrugCombDB includes 448 555 drug combinations derived from HTS assays, covering 2887 unique drugs and 124 human cancer cell lines. In particular, DrugCombDB has more than 6000 000 quantitative dose responses from which we computed multiple synergy scores to determine the overall synergistic or antagonistic effects of drug combinations. In addition to the combinations extracted from existing databases, we manually curated 457 drug combinations from thousands of PubMed publications. To benefit the further experimental validation and development of computational models, multiple datasets that are ready to train prediction models for classification and regression analysis were constructed and other significant related data were gathered. A website with a user-friendly graphical visualization has been developed for users to access the wealth of data and download prebuilt datasets. Our database is available at http://drugcombdb.denglab.org/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇湘雪月完成签到,获得积分10
1秒前
以菱完成签到 ,获得积分10
1秒前
王某人完成签到 ,获得积分10
2秒前
上官若男应助王圆圆采纳,获得10
3秒前
nihau发布了新的文献求助10
3秒前
Lee发布了新的文献求助10
4秒前
gkhsdvkb完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Nicolas发布了新的文献求助30
7秒前
8秒前
顺利的寒云完成签到 ,获得积分20
9秒前
11秒前
nihau完成签到,获得积分20
12秒前
丘比特应助牛大力采纳,获得10
15秒前
meikoo发布了新的文献求助10
15秒前
温暖海露关注了科研通微信公众号
16秒前
小萌兽完成签到 ,获得积分10
17秒前
xx完成签到 ,获得积分10
18秒前
19秒前
cc123完成签到,获得积分10
21秒前
zyx完成签到,获得积分10
21秒前
tututu关注了科研通微信公众号
21秒前
骤世界完成签到 ,获得积分10
22秒前
zyx发布了新的文献求助100
24秒前
洁净白容完成签到,获得积分10
25秒前
笨笨的鬼神应助swordlee采纳,获得10
26秒前
动听安筠完成签到 ,获得积分10
26秒前
ZYN完成签到,获得积分10
28秒前
小半完成签到,获得积分10
28秒前
DrSong发布了新的文献求助10
29秒前
鲍鲍完成签到,获得积分10
29秒前
隐形曼青应助zzzz采纳,获得50
29秒前
29秒前
Akim应助萧奕尘采纳,获得10
30秒前
自由念露完成签到 ,获得积分10
31秒前
温暖海露发布了新的文献求助10
33秒前
orixero应助研友_8KAOBn采纳,获得10
34秒前
脑洞疼应助中中采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555566
求助须知:如何正确求助?哪些是违规求助? 3131298
关于积分的说明 9390393
捐赠科研通 2830894
什么是DOI,文献DOI怎么找? 1556168
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803