Fiber-Content Measurement of Wool–Cashmere Blends Using Near-Infrared Spectroscopy

羊毛 纤维 材料科学 近红外光谱 织物 分析化学(期刊) 复合材料 化学 色谱法 光学 物理
作者
Jinfeng Zhou,Rongwu Wang,Xiongying Wu,Bugao Xu
出处
期刊:Applied Spectroscopy [SAGE Publishing]
卷期号:71 (10): 2367-2376 被引量:31
标识
DOI:10.1177/0003702817713480
摘要

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AWAY发布了新的文献求助30
1秒前
汉堡包应助Chaimengdi采纳,获得10
1秒前
1秒前
核桃应助enen采纳,获得10
1秒前
Jasper应助enen采纳,获得10
1秒前
YuanLeiZhang完成签到,获得积分10
2秒前
3秒前
3秒前
852应助完美的沉鱼采纳,获得10
3秒前
3秒前
二重音完成签到,获得积分10
4秒前
shine完成签到,获得积分10
4秒前
4秒前
5秒前
chuyinweilai发布了新的文献求助10
5秒前
库洛洛发布了新的文献求助10
5秒前
KevenDing完成签到,获得积分10
6秒前
6秒前
谦让汲完成签到,获得积分10
6秒前
老詹头完成签到,获得积分10
6秒前
冷曦发布了新的文献求助10
6秒前
研友_VZG7GZ应助是龙龙呀采纳,获得10
6秒前
yangyang2021发布了新的文献求助10
7秒前
情怀应助T_采纳,获得10
8秒前
8秒前
婷婷完成签到,获得积分10
8秒前
蛋蛋发布了新的文献求助10
9秒前
虚心的小熊猫完成签到,获得积分10
9秒前
张丹兰完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
9秒前
chen123发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助灰太狼大王采纳,获得10
10秒前
linmo完成签到,获得积分10
11秒前
11秒前
11秒前
iceeeee完成签到,获得积分10
12秒前
pluto应助婷婷采纳,获得10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3495998
关于积分的说明 11080354
捐赠科研通 3226418
什么是DOI,文献DOI怎么找? 1783846
邀请新用户注册赠送积分活动 867937
科研通“疑难数据库(出版商)”最低求助积分说明 800978