已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fiber-Content Measurement of Wool–Cashmere Blends Using Near-Infrared Spectroscopy

羊毛 纤维 材料科学 近红外光谱 织物 分析化学(期刊) 复合材料 化学 色谱法 光学 物理
作者
Jinfeng Zhou,Rongwu Wang,Xiongying Wu,Bugao Xu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:71 (10): 2367-2376 被引量:30
标识
DOI:10.1177/0003702817713480
摘要

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情的巧曼完成签到,获得积分10
1秒前
9752249发布了新的文献求助100
4秒前
研友_8KAjJn发布了新的文献求助10
5秒前
杳鸢应助aliu采纳,获得30
5秒前
十三完成签到 ,获得积分10
5秒前
leslie完成签到,获得积分10
7秒前
7秒前
8秒前
方方完成签到 ,获得积分10
11秒前
光亮凝云完成签到,获得积分10
12秒前
大意的茈发布了新的文献求助10
13秒前
背后的丸子完成签到,获得积分10
15秒前
英俊的铭应助9752249采纳,获得10
19秒前
19秒前
小芳芳完成签到 ,获得积分10
21秒前
呵呵贺哈完成签到 ,获得积分10
21秒前
lht完成签到 ,获得积分10
22秒前
yy完成签到 ,获得积分10
23秒前
自由溪灵发布了新的文献求助10
23秒前
23秒前
23秒前
合适的寄灵完成签到 ,获得积分10
23秒前
BA1完成签到,获得积分10
29秒前
FashionBoy应助zxm采纳,获得10
31秒前
啊啊啊啊宇呀完成签到 ,获得积分10
33秒前
fdwang完成签到 ,获得积分10
33秒前
34秒前
科研通AI2S应助windtalker采纳,获得10
35秒前
锋芒不毕露完成签到,获得积分10
37秒前
38秒前
斯文败类应助afengya采纳,获得10
40秒前
如愿完成签到 ,获得积分0
42秒前
zxm发布了新的文献求助10
44秒前
丸子完成签到 ,获得积分10
44秒前
46秒前
周三完成签到,获得积分10
46秒前
思源应助科研通管家采纳,获得10
46秒前
46秒前
情怀应助科研通管家采纳,获得10
46秒前
左右逢我完成签到 ,获得积分10
47秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382