Fiber-Content Measurement of Wool–Cashmere Blends Using Near-Infrared Spectroscopy

羊毛 纤维 材料科学 近红外光谱 织物 分析化学(期刊) 复合材料 化学 色谱法 光学 物理
作者
Jinfeng Zhou,Rongwu Wang,Xiongying Wu,Bugao Xu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:71 (10): 2367-2376 被引量:31
标识
DOI:10.1177/0003702817713480
摘要

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助511采纳,获得10
1秒前
stella发布了新的文献求助10
1秒前
聪明帅哥发布了新的文献求助10
1秒前
木木三发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助30
2秒前
3秒前
不吃芝士完成签到,获得积分10
3秒前
山川的奴发布了新的文献求助20
4秒前
蛇從革应助SW采纳,获得30
4秒前
勇毅前行发布了新的文献求助10
4秒前
4秒前
花花发布了新的文献求助10
4秒前
511完成签到,获得积分10
5秒前
5秒前
大风完成签到,获得积分10
5秒前
6秒前
7秒前
慕青应助zyb采纳,获得10
7秒前
7秒前
呵呵呵呵关注了科研通微信公众号
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
古木完成签到,获得积分20
9秒前
小二郎应助怡然可乐采纳,获得10
10秒前
10秒前
10秒前
kailan发布了新的文献求助10
10秒前
未来可期发布了新的文献求助10
10秒前
刘梦发布了新的文献求助10
10秒前
yufengyan完成签到,获得积分20
11秒前
Pendulium发布了新的文献求助10
11秒前
11秒前
11秒前
EVEN发布了新的文献求助10
12秒前
爆米花应助周周采纳,获得10
12秒前
12秒前
13秒前
开心蛋挞发布了新的文献求助10
13秒前
二宝完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400