Fiber-Content Measurement of Wool–Cashmere Blends Using Near-Infrared Spectroscopy

羊毛 纤维 材料科学 近红外光谱 织物 分析化学(期刊) 复合材料 化学 色谱法 光学 物理
作者
Jinfeng Zhou,Rongwu Wang,Xiongying Wu,Bugao Xu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:71 (10): 2367-2376 被引量:31
标识
DOI:10.1177/0003702817713480
摘要

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
弼马温完成签到 ,获得积分10
刚刚
fcdawn完成签到,获得积分10
刚刚
刚刚
ss发布了新的文献求助30
刚刚
蛙蛙完成签到,获得积分0
1秒前
无可匹敌的饭量完成签到,获得积分10
1秒前
上官若男应助小潘采纳,获得10
1秒前
ding应助hlt采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
前前前世完成签到,获得积分10
3秒前
4秒前
弼马温关注了科研通微信公众号
4秒前
可爱迪发布了新的文献求助10
4秒前
健壮的化蛹应助顺心的骁采纳,获得10
5秒前
小满发布了新的文献求助10
5秒前
ss完成签到 ,获得积分10
5秒前
tt完成签到,获得积分10
6秒前
6秒前
6秒前
fish1998完成签到,获得积分10
6秒前
顾矜应助优雅尔芙采纳,获得10
6秒前
Mr祥发布了新的文献求助10
7秒前
爬不起来发布了新的文献求助10
7秒前
7秒前
8秒前
CCCC完成签到,获得积分20
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
meng发布了新的文献求助10
10秒前
英姑应助hlt采纳,获得10
10秒前
科研牛马人完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910