已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fiber-Content Measurement of Wool–Cashmere Blends Using Near-Infrared Spectroscopy

羊毛 纤维 材料科学 近红外光谱 织物 分析化学(期刊) 复合材料 化学 色谱法 光学 物理
作者
Jinfeng Zhou,Rongwu Wang,Xiongying Wu,Bugao Xu
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:71 (10): 2367-2376 被引量:31
标识
DOI:10.1177/0003702817713480
摘要

Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
比奇堡发布了新的文献求助10
1秒前
徐晨曦发布了新的文献求助10
5秒前
6秒前
希望天下0贩的0应助噗噗采纳,获得30
6秒前
陈槊诸完成签到 ,获得积分10
8秒前
Accept在手完成签到,获得积分10
8秒前
jasonjiang完成签到 ,获得积分0
11秒前
Vivian发布了新的文献求助30
11秒前
菠萝完成签到 ,获得积分0
12秒前
科研通AI6应助wanghb616采纳,获得10
14秒前
科目三应助wanghb616采纳,获得10
14秒前
15秒前
LanceHayward完成签到 ,获得积分10
15秒前
15秒前
15秒前
18秒前
18秒前
19秒前
wyzhu完成签到,获得积分20
23秒前
所所应助发发采纳,获得10
24秒前
24秒前
伤心葫芦娃完成签到 ,获得积分10
25秒前
25秒前
Cindy完成签到,获得积分10
27秒前
快点发文章完成签到,获得积分10
27秒前
尊贵的乙方大人完成签到,获得积分10
27秒前
27秒前
搜集达人应助4x采纳,获得10
30秒前
30秒前
31秒前
31秒前
wyzhu发布了新的文献求助10
31秒前
彭于晏应助lipu采纳,获得10
33秒前
彭于晏应助闪闪萤采纳,获得10
34秒前
lhq发布了新的文献求助10
34秒前
小甑发布了新的文献求助10
34秒前
可爱的函函应助yan采纳,获得10
35秒前
36秒前
yyj关闭了yyj文献求助
38秒前
我是老大应助等待的香魔采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469745
求助须知:如何正确求助?哪些是违规求助? 4572753
关于积分的说明 14336952
捐赠科研通 4499697
什么是DOI,文献DOI怎么找? 2465145
邀请新用户注册赠送积分活动 1453707
关于科研通互助平台的介绍 1428209