Dynamic multi-objective optimization algorithm based decomposition and preference

偏爱 人口 计算机科学 数学优化 集合(抽象数据类型) 算法 航程(航空) 多目标优化 点(几何) 帕累托原理 进化算法 分解 数学 统计 生态学 材料科学 人口学 几何学 社会学 复合材料 生物 程序设计语言
作者
Yaru Hu,Jinhua Zheng,Juan Zou,Shouyong Jiang,Shengxiang Yang
出处
期刊:Information Sciences [Elsevier]
卷期号:571: 175-190 被引量:22
标识
DOI:10.1016/j.ins.2021.04.055
摘要

Most of the existing dynamic multi-objective evolutionary algorithms (DMOEAs) are effective, which focuses on searching for the approximation of Pareto-optimal front (POF) with well-distributed in handling dynamic multi-objective optimization problems (DMOPs). Nevertheless, in real-world scenarios, the decision maker (DM) may be only interested in a portion of the corresponding POF (i.e., the region of interest) for different instances, rather than the whole POF. Consequently, a novel DMOEA based decomposition and preference (DACP) is proposed, which incorporates the preference of DM into the dynamic search process and tracks a subset of Pareto-optimal set (POS) approximation with respect to the region of interest (ROI). Due to the presence of dynamics, the ROI, which is defined in which DM gives both the preference point and the neighborhood size, may be changing with time-varying DMOPs. Consequently, our algorithm moves the well-distributed reference points, which are located in the neighborhood range, to around the preference point to lead the evolution of the whole population. When a change occurs, a novel strategy is performed for responding to the current change. Particularly, the population will be reinitialized according to a promising direction obtained by letting a few solutions evolve independently for a short time. Comprehensive experiments show that this approach is very competitivecompared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助SiqiZhang采纳,获得10
刚刚
Zzh发布了新的文献求助10
刚刚
Hao完成签到,获得积分10
刚刚
1134完成签到,获得积分20
刚刚
yxf完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
huiluowork发布了新的文献求助10
1秒前
1秒前
现代含桃发布了新的文献求助10
1秒前
1秒前
2秒前
zcz完成签到,获得积分10
2秒前
王一生完成签到,获得积分10
2秒前
2秒前
阿筑完成签到 ,获得积分10
2秒前
程程发布了新的文献求助100
2秒前
畅快的草莓完成签到,获得积分10
2秒前
3秒前
跳跃的野狼完成签到,获得积分10
3秒前
3秒前
坚强的纸飞机完成签到,获得积分10
4秒前
ysy完成签到,获得积分10
4秒前
wwqc完成签到,获得积分0
4秒前
许女士完成签到,获得积分10
4秒前
wanci应助超帅的南霜采纳,获得10
4秒前
Wendy完成签到,获得积分10
4秒前
爆米花应助兴奋的从蕾采纳,获得10
4秒前
舒心完成签到,获得积分10
5秒前
TH1223发布了新的文献求助10
5秒前
5秒前
6秒前
黄超完成签到,获得积分10
6秒前
chenchen发布了新的文献求助10
6秒前
993494543发布了新的文献求助30
6秒前
友好的代丝完成签到,获得积分20
6秒前
友好傲白完成签到,获得积分10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284