Product Reviews: A Benefit, a Burden, or a Trifle? How Seller Reputation Affects the Role of Product Reviews

产品(数学) 业务 声誉 信誉制度 营销 经济 广告 政治学 法学 几何学 数学
作者
Hongpeng Wang,Rong Du,Wenqi Shen,Liangfei Qiu,Weiguo Fan
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
链接
摘要

The sales effect of product reviews has been a contentious issue with competing perspectives about when product reviews serve as a benefit, a burden, or a trifle. Unlike previous research that separately investigates the impact of each eWOM system, our study empirically examines the interaction effects of dual eWOM systems, i.e., product reviews and seller reputation. Drawing on reference point theory, we find that seller reputation systems play a reference point role and determine the efficacy of product reviews. Specifically, negative reviews cause a significant loss in sales for high-reputation sellers but are less detrimental for low-reputation sellers. In contrast, positive reviews can boost sales for low-reputation sellers but are less helpful for high-reputation sellers. These results highlight that seller reputation is a double-edged sword. On the one hand, a high level of seller reputation can reduce seller uncertainty and attract more consumers. On the other hand, a high level of seller reputation may raise consumers' expectations and lead to potential negative expectancy violations. Moreover, we explore what strategy may help mitigate the potential detrimental effect of reference points for high-reputation sellers. Through the lens of restructuring reference points, the reputation reference effect can be adjusted in a more dynamic reputation system (e.g., a reputation badge). Compared to sellers that have never lost their top-rated badge, sellers that have lost the top-rated badge may face an attenuated detrimental impact on sales from the negative expectancy violation due to negative reviews and enjoy a positive impact from positive reviews. We discuss the implications of our findings for both theory and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
饱饱完成签到 ,获得积分10
2秒前
3秒前
小蘑菇应助nml采纳,获得10
6秒前
悦耳的柠檬完成签到,获得积分10
7秒前
小离发布了新的文献求助10
7秒前
7326发布了新的文献求助10
8秒前
思源应助清脆的台灯采纳,获得10
8秒前
yummybacon完成签到,获得积分10
8秒前
11完成签到,获得积分10
8秒前
9秒前
JamesPei应助111采纳,获得10
11秒前
12秒前
66发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
ruirui完成签到,获得积分10
19秒前
cxr完成签到 ,获得积分10
19秒前
smile完成签到,获得积分10
19秒前
20秒前
希望天下0贩的0应助夜王采纳,获得10
20秒前
20秒前
nml发布了新的文献求助10
21秒前
youayou发布了新的文献求助10
21秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
Rita应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Hungrylunch应助科研通管家采纳,获得30
23秒前
桐桐应助科研通管家采纳,获得20
23秒前
小透明应助科研通管家采纳,获得30
23秒前
pluto应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3594199
求助须知:如何正确求助?哪些是违规求助? 3161671
关于积分的说明 9536550
捐赠科研通 2865360
什么是DOI,文献DOI怎么找? 1574695
邀请新用户注册赠送积分活动 739727
科研通“疑难数据库(出版商)”最低求助积分说明 723620