A Semi-Supervised Deep Transfer Learning Approach for Rolling-Element Bearing Remaining Useful Life Prediction

一般化 计算机科学 学习迁移 人工智能 深度学习 领域(数学) 序列(生物学) 极限(数学) 组分(热力学) 方位(导航) 机器学习 人工神经网络 工程类 数学分析 物理 热力学 生物 遗传学 纯数学 数学
作者
Tarek Berghout,Leïla Hayet Mouss,Toufik Bentrcia,Mohamed Benbouzid
出处
期刊:IEEE Transactions on Energy Conversion [Institute of Electrical and Electronics Engineers]
卷期号:37 (2): 1200-1210 被引量:31
标识
DOI:10.1109/tec.2021.3116423
摘要

Deep learning techniques have recently brought many improvements in the field of neural network training, especially for prognosis and health management. The success of such an intelligent health assessment model depends not only on the availability of labeled historical data but also on the careful samples selection. However, in real operating systems such as induction machines, which generally have a long reliable life, storing the entire operation history, including deterioration (i.e. bearings), will be very expensive and difficult to feed accurately into the training model. Other alternatives sequentially store samples that hold degradation patterns similar to real ones in damage behavior by imposing an accelerated deterioration. Labels lack and differences in distributions caused by the imposed deterioration will ultimately discriminate the training model and limit its knowledge capacity. In an attempt to overcome these drawbacks, a novel sequence-by-sequence deep learning algorithm able to expand the generalization capacity by transferring obtained knowledge from life cycles of similar systems is proposed. The new algorithm aims to determine health status by involving long short-term memory neural network as a primary component of adaptive learning to extract both health stage and health index inferences. Experimental validations are performed using the PRONOSTIA bearing degradation datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小焦儿完成签到,获得积分10
5秒前
塔莉娅完成签到,获得积分10
6秒前
8秒前
烟花应助budingman采纳,获得20
9秒前
9秒前
10秒前
称心凡霜完成签到,获得积分10
11秒前
xiaoyao发布了新的文献求助30
12秒前
12秒前
12秒前
14秒前
Wrasul完成签到 ,获得积分10
14秒前
QYF发布了新的文献求助10
14秒前
一米八关注了科研通微信公众号
14秒前
saisai发布了新的文献求助20
15秒前
16秒前
小蘑菇应助博学为农采纳,获得10
18秒前
18秒前
天天快乐应助三日采纳,获得10
21秒前
田様应助北彧采纳,获得10
21秒前
欣喜蘑菇发布了新的文献求助10
22秒前
呵呵发布了新的文献求助10
22秒前
23秒前
小田完成签到 ,获得积分10
23秒前
cherry bomb完成签到,获得积分10
27秒前
斯文败类应助ZLX采纳,获得10
28秒前
安详的曲奇完成签到,获得积分10
29秒前
意昂发布了新的文献求助10
29秒前
冷傲凝琴发布了新的文献求助10
30秒前
wanci应助saisai采纳,获得20
32秒前
33秒前
33秒前
领导范儿应助刘小雨采纳,获得10
33秒前
一米八发布了新的文献求助10
35秒前
居选金发布了新的文献求助10
36秒前
玊尔完成签到,获得积分20
38秒前
39秒前
40秒前
hoongyan完成签到 ,获得积分10
41秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382