Accelerated topological design of metaporous materials of broadband sound absorption performance by generative adversarial networks

生成语法 计算机科学 生成设计 过程(计算) 宽带 吸收(声学) 领域(数学) 钥匙(锁) 计算机工程 工程设计过程 机器学习 系统工程 人工智能 机械工程 材料科学 电信 工程类 数学 操作系统 计算机安全 复合材料 纯数学 相容性(地球化学)
作者
Hongjia Zhang,Wang Yang,Honggang Zhao,Keyu Lu,Dianlong Yu,Jihong Wen
出处
期刊:Materials & Design [Elsevier]
卷期号:207: 109855-109855 被引量:26
标识
DOI:10.1016/j.matdes.2021.109855
摘要

The topological design and optimization of metaporous materials is one of the key challenges in the field of sound absorption. Limited by the expensive computational cost, it is particularly disadvantaged when instantaneous multiple designs are required. In recent years, an increasing number of research fields are harnessing machine learning approaches thanks to their experience-free manner and outstanding efficiency. Generative Adversarial Networks (GANs), as a type of machine learning algorithms, enjoy the special benefit of powerful generative capability, making them brilliantly suitable for designing purposes. Additionally, it can fully explore the data distribution space with enormous computational power and create brand new designs. In this work, GANs are newly employed for the topological design of metaporous materials for sound absorption. Trained with numerically prepared data, they successfully propose designs with high-standard broadband absorption performance, verified by simulation and experiment. The designing process is dramatically accelerated by hundreds of times using GANs (100 designs in 4.372 s). This allows GANs to easily provide more structures and configurations, and achieve instantaneous multiple solutions, giving designers more choices to satisfy various constraints such as mass or porosity. In addition, GANs are demonstrated remarkably capable of generating creative configurations and rich local features. This work proposes a new designing principle, illustrates the value of machine learning in guiding the designing and optimizing process in the mechanical world, and opens new possibilities for the future of AI-materials interdisciplinary research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
daisy完成签到,获得积分10
1秒前
Orange应助让大佐眯会吧采纳,获得10
1秒前
曹great完成签到,获得积分10
2秒前
2秒前
趙途嘵生发布了新的文献求助10
3秒前
林钟九发布了新的文献求助10
4秒前
4秒前
踏实的沛容完成签到,获得积分10
4秒前
syy666发布了新的文献求助10
4秒前
格格巫发布了新的文献求助10
4秒前
CipherSage应助那些年采纳,获得10
4秒前
5秒前
5秒前
英俊的铭应助敏感的伟祺采纳,获得10
5秒前
5秒前
7秒前
8秒前
大模型应助心灵美的芝麻采纳,获得10
8秒前
个性的紫菜应助1213采纳,获得10
8秒前
mokmok发布了新的文献求助10
9秒前
9秒前
wanci应助江月林风采纳,获得10
9秒前
祝振振发布了新的文献求助10
10秒前
CodeCraft应助糖串串采纳,获得10
10秒前
nimonimo发布了新的文献求助10
10秒前
just完成签到,获得积分10
12秒前
科研大苹果关注了科研通微信公众号
12秒前
13秒前
sunyawen发布了新的文献求助10
13秒前
fgh发布了新的文献求助30
14秒前
Orange应助懵懂的易蓉采纳,获得10
14秒前
14秒前
mmmmm发布了新的文献求助10
15秒前
mokmok完成签到,获得积分10
15秒前
周辉发布了新的文献求助10
17秒前
汉堡包应助Jane采纳,获得10
17秒前
17秒前
17秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483178
求助须知:如何正确求助?哪些是违规求助? 3072587
关于积分的说明 9127119
捐赠科研通 2764162
什么是DOI,文献DOI怎么找? 1516962
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700737