材料科学
体内
牙科
生物医学工程
生物材料
复合材料
医学
纳米技术
生物技术
生物
作者
Zechuan Zhang,Bo Jia,Hongtao Yang,Han Yu,Qiang Wu,Kerong Dai,Yufeng Zheng
出处
期刊:Biomaterials
[Elsevier BV]
日期:2021-05-27
卷期号:275: 120905-120905
被引量:69
标识
DOI:10.1016/j.biomaterials.2021.120905
摘要
The first in vivo investigation of Zn-based biodegradable metal aiming to treat osteoporotic bone fractures, a soaring threat to human health, is reported in this paper. Among the newly developed biodegradable metal system (ZnLiSr), Zn0.8Li0.1Sr exhibits excellent comprehensive mechanical properties, with an ultimate tensile strength (524.33 ± 18.01 MPa) comparable to pure Ti (the gold standard for orthopaedic implants), and a strength-ductility balance over 10 GPa%. The in vitro degradation tests using simulated body fluid (SBF) shows that Zn0.8Li0.1Sr manifests a uniform degradation morphology and smaller corrosion pits, with a degradation rate of 10.13 ± 1.52 μm year−1. Real-time PCR and western blotting illustrated that Zn0.8Li0.1Sr successfully stimulated the expression of critical osteogenesis-related genes (ALP, COL-1, OCN and Runx-2) and proteins. Twenty-four weeks’ in vivo implantations within ovariectomized (OVX) rats were conducted to evaluate the osteoporotic-bone-fracture-treating effects of Zn0.8Li0.1Sr, with pure Ti as control group. Micro-CT, histological and immunohistochemical evaluations all revealed that Zn0.8Li0.1Sr possesses a similar biosafety level to, while significantly superior osteogenesis-inducing and osteoporotic-bone-fracture-treating effects than pure Ti. ZnLiSr biodegradable alloys manifest excellent comprehensive mechanical properties, good biosafety and osteoporotic-bone-fracture-treating effects, which would provide preferable choices for future medical applications, especially in load-bearing positions.
科研通智能强力驱动
Strongly Powered by AbleSci AI