Recognizing User Activity Using a Smartphone's Accelerometer and Deep Neural Network Classifier

加速度计 计算机科学 活动识别 分类器(UML) 人工智能 人工神经网络 移动设备 人机交互 机器学习 深度学习 计算机视觉 操作系统
作者
Syech Pranata,Teddy Mantoro,Media Anugerah Ayu,Anton Satria Prabuwon,Deshinta Arrova Dewi
标识
DOI:10.1109/icced51276.2020.9415778
摘要

Along with today's fast-growing technology, machines/devices especially mobile devices have been developed using many sensors to simplify the user's activities. One of the most known and frequently used sensors is called accelerometer, daily used as a step counter, image stabilization, and user interfaces control. However, activity recognition is considered a difficult task due to the reality that each activity has its unique features and there is no clear analytical way to analyze sensor data into specific forms of action in general. This study examines the potential and exciting ability of the accelerometer to recognize user activity by making simple prototype to support the implementation of this user activity recognition. After data acquisition, deep learning classifier will be used to differentiate activities. This research will show the efficiency and utilization of using accelerometer combined with deep learning in recognizing user activity, which can be associated with many applications for advance study such as falling detection, abnormality detection, and prediction of human behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美的冰巧完成签到 ,获得积分10
1秒前
Lucas应助秦pale采纳,获得30
2秒前
pluto应助bio_qi采纳,获得10
4秒前
abc发布了新的文献求助10
5秒前
机灵一兰完成签到 ,获得积分10
9秒前
9秒前
英俊绿海完成签到 ,获得积分10
11秒前
11秒前
留胡子的藏鸟完成签到,获得积分10
12秒前
CodeCraft应助nino采纳,获得10
12秒前
蝈蝈完成签到,获得积分10
13秒前
万幸鹿发布了新的文献求助10
13秒前
xiahou发布了新的文献求助10
14秒前
英俊的铭应助巧克小花花采纳,获得10
14秒前
DDD3完成签到,获得积分10
15秒前
16秒前
FashionBoy应助完美的映秋采纳,获得10
17秒前
灵舒完成签到,获得积分10
17秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
121231233应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得30
18秒前
Rage_Wang应助科研通管家采纳,获得20
18秒前
cdercder应助科研通管家采纳,获得10
19秒前
121231233应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
cdercder应助科研通管家采纳,获得10
19秒前
云山万重应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
121231233应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
云山万重应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Su73完成签到,获得积分10
20秒前
快乐友灵完成签到,获得积分10
21秒前
tao完成签到 ,获得积分10
21秒前
李爱国应助果小镁采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703