A Study on Predicting the Length of Hospital Stay for Chinese Patients With Ischemic Stroke Based on the XGBoost Algorithm

病历 数据预处理 机器学习 冲程(发动机) 特征选择 人工智能 失语症 医学 预处理器 缺血性中风 排名(信息检索) 计算机科学 算法 数据挖掘 内科学 工程类 缺血 精神科 机械工程
作者
Rui Chen,Shengfa Zhang,Jie Li,Dongwei Guo,Weijun Zhang,Donghua Tian,Linni Gu,Zhiyong Qu,Xiaohua Wang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-344337/v1
摘要

Abstract Background China faced the most significant challenge from stroke because it imposes a heavy burden on families, national health services, social services, and the economy. The length of hospital stay (LOS) was an essential indicator of utilization of medical services and was usually used to assess the efficiency of hospital management and patient quality of care. This study established a prediction model based on the machine learning algorithm to predict the ischemic stroke patients' LOS. Methods A total of 18,195 ischemic stroke patients' electronic medical records and 28 attributes were extracted from electronic medical records in a large comprehensive hospital in China. After preprocessing the data and feature selection, the XGBoost algorithm was used for building a machine learning model. The 10-fold cross-validation was used for model validation. The accuracy (ACC), recall rate (RE) and F1 measure were used to evaluate the performance of the prediction model of LOS of ischemic stroke patients. Finally, the XGBoost algorithm was used to identify and remove irrelevant features by ranking all attributes based on feature importance. Results The average ACC, RE and F1 measure were 0.96, 0.82 and 0.79, respectively, under the 10-fold cross-validation. According to the analysis of the importance of features, the LOS of ischemic stroke patients was affected by demographic characteristics, past medical history, admission examination features, and operation characteristics. Finally, the features, including NIHSS, MRS, Hemiplegia aphasia, age, BMI and TIA etc. were found to be the top ten features in importance in predicting the LOS of ischemic stroke patients. Conclusions The XGBoost algorithm was an appropriate machine learning method for predicting the LOS of patients with ischemic stroke. Based on the prediction model, an intelligent medical management prediction system could be developed to predict the LOS based on ischemic stroke patients' electronic medical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjfjs2cd发布了新的文献求助10
刚刚
xiaofeiyang1122完成签到,获得积分10
1秒前
周周完成签到,获得积分10
1秒前
Luckqi6688完成签到,获得积分10
1秒前
wym完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
2秒前
nana完成签到,获得积分10
2秒前
Stella完成签到 ,获得积分10
3秒前
3秒前
3秒前
tt完成签到,获得积分10
3秒前
4秒前
wym发布了新的文献求助10
4秒前
Zerone01001完成签到,获得积分10
4秒前
1234应助四十四次日落采纳,获得10
4秒前
ramu完成签到,获得积分10
4秒前
周周发布了新的文献求助10
4秒前
5秒前
5秒前
Jasper应助Luckqi6688采纳,获得30
5秒前
后知后觉发布了新的文献求助30
5秒前
xcl发布了新的文献求助10
6秒前
Cornelius发布了新的文献求助10
6秒前
YIFGU完成签到 ,获得积分10
7秒前
共享精神应助豆豆采纳,获得10
7秒前
7秒前
倪吉旭完成签到,获得积分10
7秒前
Ava应助ljy采纳,获得10
9秒前
笨笨梦松完成签到,获得积分10
9秒前
xixi完成签到,获得积分10
9秒前
大地完成签到,获得积分10
9秒前
9秒前
10秒前
寻找土豆的灯完成签到 ,获得积分10
10秒前
11秒前
我来也完成签到 ,获得积分10
11秒前
zho关闭了zho文献求助
11秒前
爱学习发布了新的文献求助10
12秒前
大大的DY完成签到 ,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774104
求助须知:如何正确求助?哪些是违规求助? 3319757
关于积分的说明 10196865
捐赠科研通 3034369
什么是DOI,文献DOI怎么找? 1664961
邀请新用户注册赠送积分活动 796461
科研通“疑难数据库(出版商)”最低求助积分说明 757490