A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder

计算机科学 压缩传感 过度拟合 人工智能 模式识别(心理学) 断层(地质) 特征提取 卷积(计算机科学) 人工神经网络 地质学 地震学
作者
Chuang Liang,Changzheng Chen,Ye Liu,Xinying Jia
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 154777-154787 被引量:2
标识
DOI:10.1109/access.2021.3129061
摘要

This paper investigates the unsupervised automatic feature extraction method with a large amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where the fault information is hard to identify due to the low-level features of a single category and the massive fault data is difficult to process. Different from the existing methods, which only combine the compressive sensing with single category of low-level features, or extract features from raw data, a novel intelligent fault diagnosis method for rolling bearings based on the compressive sensing and a stacked multi-granularity convolution denoise auto-encoder network is proposed, which utilizes the nonlinear projection to achieve the compressed acquisition and resolves issues with character unicity by extracting a diverse category of high-level features. Moreover, a regularization method called ‘dropout’ is used to prevent overfitting during the training process. The amount of measured data that contained all the information of faults is reduced and the classification accuracy is improved by extracting more robust features based on the proposed method. Finally, the effectiveness of the proposed method is validated using data sets from rolling bearings in an automotive production line and the analysis result show that it is superior to the existing methods and is able to obtain high diagnostic accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwt应助小雄采纳,获得10
1秒前
2秒前
打野完成签到,获得积分10
2秒前
3秒前
ding应助二三采纳,获得10
3秒前
新八发布了新的文献求助10
5秒前
情怀应助唐水之采纳,获得10
5秒前
蛋蛋应助阿黎采纳,获得10
6秒前
子车谷波发布了新的文献求助10
6秒前
yanmiu1完成签到,获得积分10
7秒前
皮皮的章鱼烧完成签到,获得积分10
7秒前
7秒前
小小完成签到,获得积分10
7秒前
orixero应助开朗的大米采纳,获得10
9秒前
10秒前
10秒前
白桃乌龙完成签到,获得积分10
11秒前
11秒前
ding应助长vefvj采纳,获得10
12秒前
dongdong完成签到,获得积分10
12秒前
舒克发布了新的文献求助10
12秒前
如你所liao完成签到,获得积分10
13秒前
lallallallall应助小欣采纳,获得10
14秒前
14秒前
14秒前
14秒前
NNN完成签到,获得积分10
15秒前
15秒前
星辰大海应助李哈采纳,获得10
15秒前
18秒前
大橙子发布了新的文献求助10
18秒前
我是老大应助ricardo采纳,获得10
19秒前
NNN发布了新的文献求助20
19秒前
复杂的海完成签到,获得积分10
20秒前
qqq完成签到,获得积分10
21秒前
在水一方应助张皓123采纳,获得10
22秒前
23秒前
25秒前
陶醉小土豆完成签到 ,获得积分10
25秒前
fairy完成签到,获得积分10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152088
求助须知:如何正确求助?哪些是违规求助? 2803383
关于积分的说明 7853471
捐赠科研通 2460824
什么是DOI,文献DOI怎么找? 1310064
科研通“疑难数据库(出版商)”最低求助积分说明 629107
版权声明 601765