A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder

计算机科学 压缩传感 过度拟合 人工智能 模式识别(心理学) 断层(地质) 特征提取 卷积(计算机科学) 人工神经网络 地质学 地震学
作者
Chuang Liang,Changzheng Chen,Ye Liu,Xinying Jia
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 154777-154787 被引量:2
标识
DOI:10.1109/access.2021.3129061
摘要

This paper investigates the unsupervised automatic feature extraction method with a large amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where the fault information is hard to identify due to the low-level features of a single category and the massive fault data is difficult to process. Different from the existing methods, which only combine the compressive sensing with single category of low-level features, or extract features from raw data, a novel intelligent fault diagnosis method for rolling bearings based on the compressive sensing and a stacked multi-granularity convolution denoise auto-encoder network is proposed, which utilizes the nonlinear projection to achieve the compressed acquisition and resolves issues with character unicity by extracting a diverse category of high-level features. Moreover, a regularization method called ‘dropout’ is used to prevent overfitting during the training process. The amount of measured data that contained all the information of faults is reduced and the classification accuracy is improved by extracting more robust features based on the proposed method. Finally, the effectiveness of the proposed method is validated using data sets from rolling bearings in an automotive production line and the analysis result show that it is superior to the existing methods and is able to obtain high diagnostic accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃泡芙完成签到,获得积分10
刚刚
白桃战士完成签到,获得积分10
1秒前
3秒前
qingchenwuhou完成签到 ,获得积分10
3秒前
XXX完成签到,获得积分10
4秒前
锡嘻完成签到 ,获得积分10
4秒前
5秒前
彗星入梦完成签到 ,获得积分10
5秒前
恋恋青葡萄完成签到,获得积分10
5秒前
隐形万言完成签到,获得积分10
7秒前
Time完成签到,获得积分10
7秒前
土木研学僧完成签到,获得积分10
8秒前
yjy完成签到 ,获得积分10
8秒前
A溶大美噶完成签到,获得积分10
8秒前
yar应助萨尔莫斯采纳,获得10
9秒前
Will发布了新的文献求助10
9秒前
美好的鹏笑完成签到,获得积分10
11秒前
啦啦啦啦啦完成签到,获得积分10
11秒前
LYegoist完成签到,获得积分10
13秒前
可爱的小丸子完成签到,获得积分10
13秒前
一川烟叶完成签到,获得积分10
15秒前
15秒前
18秒前
iFan完成签到 ,获得积分10
18秒前
萨尔莫斯完成签到,获得积分10
18秒前
合适靖儿完成签到 ,获得积分10
20秒前
林林林完成签到,获得积分10
21秒前
斯琪欣完成签到,获得积分10
22秒前
23秒前
MQQ完成签到 ,获得积分10
23秒前
meng发布了新的文献求助10
23秒前
24秒前
zxc167完成签到,获得积分10
24秒前
研友_nVWP2Z完成签到 ,获得积分10
26秒前
俭朴的半雪完成签到 ,获得积分10
27秒前
大橙子发布了新的文献求助10
28秒前
meng完成签到,获得积分10
29秒前
30秒前
30秒前
科研韭菜完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022