A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder

计算机科学 压缩传感 过度拟合 人工智能 模式识别(心理学) 断层(地质) 特征提取 卷积(计算机科学) 人工神经网络 地质学 地震学
作者
Chuang Liang,Changzheng Chen,Ye Liu,Xinying Jia
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 154777-154787 被引量:2
标识
DOI:10.1109/access.2021.3129061
摘要

This paper investigates the unsupervised automatic feature extraction method with a large amount of unlabeled data for the fault diagnosis of rolling bearings in automobile production line, where the fault information is hard to identify due to the low-level features of a single category and the massive fault data is difficult to process. Different from the existing methods, which only combine the compressive sensing with single category of low-level features, or extract features from raw data, a novel intelligent fault diagnosis method for rolling bearings based on the compressive sensing and a stacked multi-granularity convolution denoise auto-encoder network is proposed, which utilizes the nonlinear projection to achieve the compressed acquisition and resolves issues with character unicity by extracting a diverse category of high-level features. Moreover, a regularization method called ‘dropout’ is used to prevent overfitting during the training process. The amount of measured data that contained all the information of faults is reduced and the classification accuracy is improved by extracting more robust features based on the proposed method. Finally, the effectiveness of the proposed method is validated using data sets from rolling bearings in an automotive production line and the analysis result show that it is superior to the existing methods and is able to obtain high diagnostic accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助多情邑采纳,获得10
刚刚
2秒前
今后应助灵巧妙柏采纳,获得10
2秒前
coconutluv77发布了新的文献求助10
2秒前
一二三砰发布了新的文献求助10
4秒前
哎呀完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
脑洞疼应助默顿的笔记本采纳,获得10
7秒前
7秒前
wonder123发布了新的文献求助10
7秒前
温暖雨灵完成签到,获得积分20
8秒前
iNk应助YellowStar采纳,获得10
8秒前
辛辛应助麦子采纳,获得10
9秒前
9秒前
然12138发布了新的文献求助10
10秒前
hanghang完成签到,获得积分10
10秒前
哎呀发布了新的文献求助10
11秒前
灵巧妙柏完成签到,获得积分10
11秒前
FF完成签到 ,获得积分10
11秒前
11秒前
12秒前
好滴捏发布了新的文献求助10
12秒前
16秒前
17秒前
上官若男应助ddddd采纳,获得10
17秒前
18秒前
贤惠的白开水完成签到 ,获得积分10
18秒前
圆圆完成签到 ,获得积分10
18秒前
光亮语梦完成签到 ,获得积分10
18秒前
小白完成签到 ,获得积分10
22秒前
王维佳发布了新的文献求助10
22秒前
Orange应助认真初之采纳,获得10
22秒前
金鱼发布了新的文献求助10
23秒前
23秒前
23秒前
24秒前
24秒前
研究牛王完成签到,获得积分20
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176