UHR-DeepFMT: Ultra-High Spatial Resolution Reconstruction of Fluorescence Molecular Tomography Based on 3-D Fusion Dual-Sampling Deep Neural Network

人工智能 模式识别(心理学) 计算机视觉 图像融合 荧光寿命成像显微镜 融合 断层摄影术 重建算法 深度学习
作者
Peng Zhang,Guangda Fan,Tongtong Xing,Fan Song,Guanglei Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (11): 3217-3228 被引量:1
标识
DOI:10.1109/tmi.2021.3071556
摘要

Fluorescence molecular tomography (FMT) is a promising and high sensitivity imaging modality that can reconstruct the three-dimensional (3D) distribution of interior fluorescent sources. However, the spatial resolution of FMT has encountered an insurmountable bottleneck and cannot be substantially improved, due to the simplified forward model and the severely ill-posed inverse problem. In this work, a 3D fusion dual-sampling convolutional neural network, namely UHR-DeepFMT, was proposed to achieve ultra-high spatial resolution reconstruction of FMT. Under this framework, the UHR-DeepFMT does not need to explicitly solve the FMT forward and inverse problems. Instead, it directly establishes an end-to-end mapping model to reconstruct the fluorescent sources, which can enormously eliminate the modeling errors. Besides, a novel fusion mechanism that integrates the dual-sampling strategy and the squeeze-and-excitation (SE) module is introduced into the skip connection of UHR-DeepFMT, which can significantly improve the spatial resolution by greatly alleviating the ill-posedness of the inverse problem. To evaluate the performance of UHR-DeepFMT network model, numerical simulations, physical phantom and in vivo experiments were conducted. The results demonstrated that the proposed UHR-DeepFMT can outperform the cutting-edge methods and achieve ultra-high spatial resolution reconstruction of FMT with the powerful ability to distinguish adjacent targets with a minimal edge-to-edge distance (EED) of 0.5 mm. It is assumed that this research is a significant improvement for FMT in terms of spatial resolution and overall imaging quality, which could promote the precise diagnosis and preclinical application of small animals in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
绾绾发布了新的文献求助10
刚刚
格格星发布了新的文献求助10
刚刚
xxww发布了新的文献求助10
刚刚
1秒前
1秒前
花的微笑发布了新的文献求助10
1秒前
LGChemistry完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
喜气洋洋完成签到 ,获得积分10
3秒前
3秒前
orixero应助猪猪朱采纳,获得30
4秒前
4秒前
5秒前
牛牛发布了新的文献求助10
5秒前
香蕉觅云应助Zhihu采纳,获得10
5秒前
弋禾火完成签到 ,获得积分10
5秒前
WWXWWX完成签到,获得积分10
5秒前
5秒前
6秒前
liuqiaozhutou发布了新的文献求助10
6秒前
8秒前
冷语发布了新的文献求助10
8秒前
邓可新发布了新的文献求助10
8秒前
贪玩菲音完成签到,获得积分10
9秒前
9秒前
wxt完成签到 ,获得积分10
9秒前
大个应助LGChemistry采纳,获得10
10秒前
hahahah发布了新的文献求助10
11秒前
WWXWWX发布了新的文献求助10
11秒前
Zn发布了新的文献求助10
11秒前
小满发布了新的文献求助30
12秒前
13秒前
13秒前
无敌阿东完成签到 ,获得积分10
13秒前
gwenjing完成签到,获得积分10
13秒前
刘大宝发布了新的文献求助10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143506
求助须知:如何正确求助?哪些是违规求助? 2794865
关于积分的说明 7812588
捐赠科研通 2450967
什么是DOI,文献DOI怎么找? 1304178
科研通“疑难数据库(出版商)”最低求助积分说明 627193
版权声明 601386