已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy

表面等离子共振 纳米结构 局域表面等离子体子 表面等离子体子 拉曼散射 表面增强拉曼光谱 纳米颗粒 纳米棒 可见光谱 胶体金
作者
Kexun Chen,Hui Wang
出处
期刊:Molecular Systems Design and Engineering [Royal Society of Chemistry]
卷期号:6 (4): 250-280 被引量:6
标识
DOI:10.1039/d1me00016k
摘要

Optically excited plasmonic nanostructures exhibit unique capabilities to catalyze interfacial chemical transformations of molecules adsorbed on their surfaces in a regioselective manner through anomalous reaction pathways that are inaccessible under thermal conditions. The mechanistic complexity of plasmon-driven photocatalysis is intimately tied to a series of photophysical and photochemical processes associated with the radiative and non-radiative decay of localized plasmon resonances in metallic nanostructures. Plasmon-enhanced Raman spectroscopy combines ultrahigh detection sensitivity with unique time-resolving and molecular finger-printing capabilities, ideal for detailed kinetic and mechanistic studies of photocatalytic interfacial transformations of molecular adsorbates residing in the plasmonic hot spots. Through systematic case studies of several representative reactions, we demonstrate how plasmon-enhanced Raman spectroscopy can be judiciously utilized as a unique in situ spectroscopic tool to fine-resolve the detailed molecule-transforming processes on the surfaces of optically excited plasmonic nanostructures in real time during the photocatalytic reactions. We further epitomize the mechanistic insights gained from in situ plasmon-enhanced Raman spectroscopic measurements into several central materials design principles that can be employed to guide the rational optimization of the photocatalyst structures and the nanostructure-molecule interfaces for plasmon-mediated surface chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YVO4发布了新的文献求助10
刚刚
自觉芒果发布了新的文献求助20
1秒前
3秒前
summer发布了新的文献求助10
5秒前
炽岈发布了新的文献求助10
6秒前
我是老大应助Xumeiling采纳,获得30
6秒前
minhdh完成签到,获得积分10
6秒前
romy发布了新的文献求助10
7秒前
lida发布了新的文献求助10
7秒前
彭于晏应助饭团不吃鱼采纳,获得10
10秒前
11秒前
13秒前
CodeCraft应助lxl220采纳,获得10
14秒前
积极寻梅完成签到,获得积分20
18秒前
20秒前
20秒前
20秒前
20秒前
mm完成签到 ,获得积分10
20秒前
王王王发布了新的文献求助10
22秒前
SciGPT应助李响采纳,获得20
22秒前
饭团不吃鱼完成签到,获得积分10
22秒前
慕青应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
虎正凯完成签到 ,获得积分10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
斧王应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
24秒前
sw123完成签到 ,获得积分10
24秒前
25秒前
Cassel发布了新的文献求助30
27秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243732
求助须知:如何正确求助?哪些是违规求助? 4410020
关于积分的说明 13726872
捐赠科研通 4279637
什么是DOI,文献DOI怎么找? 2348225
邀请新用户注册赠送积分活动 1345435
关于科研通互助平台的介绍 1303665