Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery

代谢组 尿 代谢组学 膀胱癌 代谢物 泌尿系统 医学 生物标志物 曲线下面积 内科学 生物标志物发现 癌症 肿瘤科 生物信息学 生物 生物化学 蛋白质组学 基因
作者
Xiaoyan Liu,Xiangming Cheng,Xiang Liu,Lu He,Wenli Zhang,Yajie Wang,Wei Sun,Zhigang Ji
出处
期刊:International Journal of Cancer [Wiley]
卷期号:143 (2): 408-418 被引量:61
标识
DOI:10.1002/ijc.31323
摘要

Urine metabolomics have been used to identify biomarkers for clinical diseases. However, inter‐individual variations and effect factors need to be further evaluated. In our study, we explored the urine metabolome in a cohort of 203 health adults, 6 patients with benign bladder lesions, and 53 patients with bladder cancer (BCa) using liquid chromatography coupled with high resolution mass spectrometry. Inter‐individual analysis of both healthy controls and BCa patients showed that the urine metabolome was relatively stable. Further analysis indicated that sex and age affect inter‐individual variations in urine metabolome. Metabolic pathways such as tryptophan metabolism, the citrate cycle, and pantothenate and CoA biosynthesis were found to be related to sex and age. To eliminate age and sex interference, additional BCa urine metabolomic biomarkers were explored using age and sex‐matched urine samples (Test group: 44 health adults vs . 33 patients with BCa). Metabolic profiling of urine could significantly differentiate the cases with cancer from the controls and high‐grade from low‐grade BCa. A metabolite panel consisting of trans‐2‐dodecenoylcarnitine, serinyl‐valine, feruloyl‐2‐hydroxyputrescine, and 3‐hydroxynonanoyl carnitine were discovered to have good predictive ability for BCa with an area under the curve (AUC) of 0.956 (cross validation: AUC = 0.924). A panel of indolylacryloylglycine, N 2 ‐galacturonyl‐L‐lysine, and aspartyl‐glutamate was used to establish a robust model for high‐ and low‐grade BCa distinction with AUC of 0.937 (cross validation: AUC = 0.891). External sample (26 control vs . 20 BCa) validation verified the acceptable accuracy of these models for BCa detection. Our study showed that urinary metabolomics is a useful strategy for differential analysis and biomarker discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MOhy完成签到,获得积分10
2秒前
共享精神应助yyyq0721采纳,获得10
2秒前
思源应助TanFT采纳,获得10
3秒前
4秒前
科研通AI2S应助wxxsx采纳,获得10
5秒前
5秒前
大模型应助66m37采纳,获得10
5秒前
6秒前
巨人文发布了新的文献求助10
9秒前
缪尹盛完成签到,获得积分10
9秒前
10秒前
SPINARM发布了新的文献求助10
11秒前
orixero应助111采纳,获得10
11秒前
13秒前
13秒前
Hello应助鲤鱼懿轩采纳,获得10
14秒前
狄淇儿完成签到,获得积分10
15秒前
半岛铁盒发布了新的文献求助10
16秒前
17秒前
巨人文完成签到,获得积分10
17秒前
18秒前
香蕉觅云应助谨言采纳,获得10
18秒前
dm发布了新的文献求助10
18秒前
Hsu发布了新的文献求助10
20秒前
nyq发布了新的文献求助10
21秒前
21秒前
我是老大应助张龙生采纳,获得10
22秒前
琦琦发布了新的文献求助10
24秒前
24秒前
乐正熠彤发布了新的文献求助10
25秒前
慕青应助郭倩采纳,获得10
25秒前
隐形觅风完成签到 ,获得积分10
25秒前
零度应助有魅力小白菜采纳,获得10
26秒前
你仍是我给你仍是我的求助进行了留言
26秒前
123jjc完成签到,获得积分20
27秒前
阿季发布了新的文献求助10
27秒前
Hsu完成签到,获得积分10
29秒前
完美世界应助SXYYXS采纳,获得10
29秒前
Gzero1发布了新的文献求助10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233196
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212752
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623086