Meta-Transfer Learning for Few-Shot Learning

元学习(计算机科学) 机器学习 弹丸 半监督学习 任务(项目管理) 知识转移 主动学习(机器学习)
作者
Quansen Sun,Yaoyao Liu,Tat-Seng Chua,Bernt Schiele
出处
期刊:Cornell University - arXiv 被引量:732
标识
DOI:10.1109/cvpr.2019.00049
摘要

Meta-learning has been proposed as a framework to address the challenging few-shot learning setting. The key idea is to leverage a large number of similar few-shot tasks in order to learn how to adapt a base-learner to a new task for which only a few labeled samples are available. As deep neural networks (DNNs) tend to overfit using a few samples only, meta-learning typically uses shallow neural networks (SNNs), thus limiting its effectiveness. In this paper we propose a novel few-shot learning method called meta-transfer learning (MTL) which learns to adapt a deep NN for few shot learning tasks. Specifically, "meta" refers to training multiple tasks, and "transfer" is achieved by learning scaling and shifting functions of DNN weights for each task. In addition, we introduce the hard task (HT) meta-batch scheme as an effective learning curriculum for MTL. We conduct experiments using (5-class, 1-shot) and (5-class, 5-shot) recognition tasks on two challenging few-shot learning benchmarks: miniImageNet and Fewshot-CIFAR100. Extensive comparisons to related works validate that our meta-transfer learning approach trained with the proposed HT meta-batch scheme achieves top performance. An ablation study also shows that both components contribute to fast convergence and high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mia发布了新的文献求助10
2秒前
不想干活应助温柔衬衫采纳,获得10
2秒前
3秒前
李爱国应助风中思松采纳,获得10
3秒前
大个应助梨花诗采纳,获得10
3秒前
4秒前
wjw发布了新的文献求助10
5秒前
爆米花应助唐ZY123采纳,获得30
6秒前
Owen应助傻丢采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
1huiqina发布了新的文献求助30
7秒前
7秒前
7秒前
momo发布了新的文献求助10
9秒前
10秒前
sunliying完成签到,获得积分10
11秒前
11秒前
希望天下0贩的0应助卿卿采纳,获得10
12秒前
小野完成签到,获得积分20
13秒前
14秒前
科研通AI5应助十一号采纳,获得10
16秒前
lily发布了新的文献求助10
17秒前
17秒前
冯嘉烨完成签到,获得积分10
17秒前
19秒前
19秒前
hyhyhyhy完成签到,获得积分10
19秒前
Quentin9998发布了新的文献求助10
20秒前
20秒前
yolo完成签到,获得积分10
20秒前
22秒前
syslby完成签到,获得积分10
25秒前
科研通AI6应助圆圆努力中采纳,获得10
25秒前
26秒前
26秒前
东郭凝蝶完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助200
27秒前
大模型应助XH_L采纳,获得10
27秒前
liberation完成签到 ,获得积分0
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875