树枝状大分子
生物传感器
胶体金
循环伏安法
化学
过氧化氢
电化学
检出限
核化学
共价键
氧化还原
戊二醛
纳米颗粒
介电谱
无机化学
电极
材料科学
纳米技术
高分子化学
有机化学
色谱法
物理化学
生物化学
作者
Mari Elancheziyan,Sellappan Senthilkumar
标识
DOI:10.1016/j.apsusc.2019.143540
摘要
Design and development of electrochemical biosensors with improved selectivity, sensitivity and stability is one of the thrust areas of research in analytical and materials chemistry. In the present work, hemoglobin (Hb) was covalently immobilized on polyamidoamine (PAMAM) dendrimer encapsulated with gold nanoparticles (AuNPs), which was further utilized for the electrochemical detection of hydrogen peroxide (H2O2). Third generation PAMAM dendrimers were synthesized and AuNPs were encapsulated within the dendrimer network. Hb was covalently immobilized through glutaraldehyde cross-linking between the free amino groups of Hb and that of the PAMAM dendrimer. Hb/PAMAM-AuNPs was immobilized on a glassy carbon electrode (GCE) and the Hb/PAMAM-AuNPs/GCE modified electrode thus fabricated was characterized with electrochemical impedance spectroscopy and cyclic voltammetry. The Hb/PAMAM-AuNPs/GCE biosensor displayed well resolved redox peaks with anodic peak potential at −0.252 V and cathodic potential at −0.321 V, corresponding to Fe(III)/Fe(II) redox couple of heme active centre. Further, the developed Hb/PAMAM-AuNPs/GCE showed very good electrocatalytic activity for the reduction of H2O2 at a potential of −0.35 V. The Hb/PAMAM-AuNPs/GCE biosensor has shown impressive performance towards H2O2 determination in the concentration range from 20 μM to 950.22 μM. The sensitivity of the biosensor was calculated to be 35.07 μA μM−1 cm−2 with a detection limit of 6.1 μM. Also, the Hb/PAMAM-AuNPs/GCE modified electrode exhibited higher stability and good reproducibility.
科研通智能强力驱动
Strongly Powered by AbleSci AI