Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer

计算机科学 编码 推论 图形 人工智能 变压器 编码器 卷积神经网络 注意力网络 机器学习 理论计算机科学 工程类 生物化学 化学 电压 电气工程 基因 操作系统
作者
Kunpeng Zhang,Xiaoliang Feng,Lan Wu,Zhengbing He
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 22343-22353 被引量:57
标识
DOI:10.1109/tits.2022.3164450
摘要

For autonomous vehicles driving on roads, future trajectories of surrounding traffic agents (e.g., vehicles, bicycles, pedestrians) are essential information. The prediction of future trajectories is challenging as the motion of traffic agents is constantly affected by spatial-temporal interactions from agents and road infrastructure. To take those interactions into account, this study proposes a Graph Attention Transformer (Gatformer) in which a traffic scene is represented by a sparse graph. To maintain the spatial and temporal information of traffic agents in a traffic scene, Convolutional Neural Networks (CNNs) are utilized to extract spatial features and a position encoder is proposed to encode the spatial features and the corresponding temporal features. Based on the encoded features, a Graph Attention Network (GAT) block is employed to model the agent-agent and agent-infrastructure interactions with the help of attention mechanisms. Finally, a Transformer network is introduced to predict trajectories for multiple agents simultaneously. Experiments are conducted over the Lyft dataset and state-of-the-art methods are introduced for comparison. The results show that the proposed Gatformer could make more accurate predictions while requiring less inference time than its counterparts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
斯文败类应助黎建东采纳,获得10
4秒前
llll完成签到,获得积分10
5秒前
科研通AI6应助又听风雨采纳,获得10
5秒前
5秒前
6秒前
科研发布了新的文献求助10
6秒前
6秒前
科研通AI6应助xs采纳,获得10
7秒前
7秒前
炸茄盒的老头完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
时尚香寒发布了新的文献求助10
10秒前
shishi关注了科研通微信公众号
10秒前
Owen应助科研采纳,获得10
11秒前
11秒前
11秒前
12秒前
王双燕发布了新的文献求助10
13秒前
infinite完成签到,获得积分10
14秒前
Su_Zehe发布了新的文献求助10
14秒前
研友_VZG7GZ应助时尚香寒采纳,获得10
14秒前
16秒前
111发布了新的文献求助10
17秒前
能干的捕发布了新的文献求助10
18秒前
zmnzmnzmn发布了新的文献求助30
18秒前
19秒前
19秒前
黎建东发布了新的文献求助10
19秒前
21秒前
orixero应助快乐的凡霜采纳,获得10
21秒前
22秒前
22秒前
22秒前
SCIfafafafa发布了新的文献求助10
22秒前
24秒前
xyx发布了新的文献求助10
24秒前
zmnzmnzmn完成签到,获得积分10
25秒前
顺利的6发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553225
求助须知:如何正确求助?哪些是违规求助? 4637764
关于积分的说明 14650974
捐赠科研通 4579638
什么是DOI,文献DOI怎么找? 2511776
邀请新用户注册赠送积分活动 1486737
关于科研通互助平台的介绍 1457665