已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning assisted fast mask optimization

计算机科学 光学接近校正 深度学习 人工智能 扫描仪 平版印刷术 计算光刻 计算机工程 光栅图形 计算机硬件 计算机体系结构 电子工程 多重图案 抵抗 工程类 过程(计算) 纳米技术 材料科学 操作系统 光电子学 图层(电子)
作者
Song Lan,Jiangwei Li,Jun Liu,Yumin Wang,Ke Zhao
标识
DOI:10.1117/12.2297514
摘要

Deep neural networks (DNN) have been widely used in many applications in the past few years. Their capabilities to mimic high-dimensional complex systems make them also attractive for the area of semiconductor engineering, including lithographic mask design. Recent progress of mask writing technologies, including emergent techniques such as multi-beam raster scan mask writers, has made it possible to produce curvilinear masks with essentially "any" shapes. The increased granularity of mask shapes brings enormous advantages and challenges to resolution enhancement techniques (RET) such as optical proximity correction (OPC), Inverse lithography technologies (ILT), and other advanced mask optimization tools. Attempts of replacing the conventional segment based OPC by the ILT and other advanced solutions for full chip mask tapeout have been around for over a decade. Extremely slow mask data total-turnaround time is one of the major blocks. Therefore, its applications have been limited to small clip based applications such as for scanner source optimization, mask optimization only used for hotspot fixing and hierarchical memory designs. In this paper we present a new technique to apply DNN in our newly developed GPU-accelerated mask optimization platform, which reduces the runtime significantly without sacrificing the accuracy and convergence. This new tool combines deep learning, GPU computing platform and advanced optimization algorithms, and provides a fast and accurate solution for mask optimization in the sub-10nm tech nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小昊完成签到 ,获得积分10
1秒前
樟脑丸完成签到,获得积分20
3秒前
社牛小柯发布了新的文献求助10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得30
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
11秒前
12秒前
稳重岩完成签到 ,获得积分0
12秒前
13秒前
点击获取发布了新的文献求助10
14秒前
yanyue完成签到 ,获得积分10
15秒前
XJTUMFQ完成签到,获得积分10
15秒前
汉堡包应助faquir采纳,获得10
15秒前
langhai完成签到,获得积分10
16秒前
虚幻笑晴发布了新的文献求助10
17秒前
思源应助樟脑丸采纳,获得10
17秒前
友好板栗发布了新的文献求助10
17秒前
鲤鱼听荷完成签到 ,获得积分10
18秒前
111111zx111完成签到,获得积分10
22秒前
执着续完成签到 ,获得积分10
28秒前
111111zx111发布了新的文献求助10
29秒前
哲别完成签到,获得积分10
29秒前
fxx完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524