化学
细胞毒性
生物活性
生物测定
结构-活动关系
立体化学
IC50型
化学结构
行动方式
分子模型
体外
化学合成
组合化学
生物化学
有机化学
生物
遗传学
作者
Ren-Jun Wu,Kaixuan Zhou,Haoxin Yang,Guo-Qing Song,Yonghong Li,Jiaxin Fu,Xiǎo Zhang,Shujing Yu,Zhen Wang,Lixia Xiong,Congwei Niu,Fuhang Song,Haitao Yang,Jianguo Wang
标识
DOI:10.1016/j.ejmech.2019.02.002
摘要
Since pyrithiobac (PTB) is a successful commercial herbicide with very low toxicity against mammals, it is worth exploring its derivatives for an extensive study. Herein, a total of 35 novel compounds were chemically synthesized and single crystal of 6–6 was obtained to confirm the molecular structure of this family of compounds. The novel PTB derivatives were fully evaluated against various biological platforms. From the bioassay results, the best AHAS inhibitor 6–22 displayed weaker herbicidal activity but stronger anti-Candida activity than PTB did. For plant pathogenic fungi, 6–26 showed excellent activity at 50 mg/L dosage. Preliminary insecticidal activity and antiviral activity were also observed for some title compounds. Strikingly, 6–5 exhibited a promising inhibitory activity against SARS-CoV Mpro with IC50 of 4.471 μM and a low cellular cytotoxicity against mammalian 293 T cells. Based on the results of molecular modeling, HOMO-1 was considered to be a factor that affects AHAS inhibition and a possible binding mode of 6–5 with SARS-CoV Mpro was predicted. This is the first time that PTB derivatives have been studied as biological agents other than herbicides. The present research hence has suggested that more attentions should be paid to compounds belonging to this family to develop novel agrochemicals or medicines.
科研通智能强力驱动
Strongly Powered by AbleSci AI