灌木
多年生植物
干旱
草原
生态学
植物群落
生态系统
气候变化
非生物成分
高原(数学)
降水
格兰马草
植物生态学
环境科学
农学
生物
地理
生态演替
数学分析
气象学
数学
作者
Daniel E. Winkler,Jayne Belnap,David L. Hoover,Sasha C. Reed,Michael C. Duniway
摘要
Abstract Droughts in the southwest United States have led to major forest and grassland die‐off events in recent decades, suggesting plant community and ecosystem shifts are imminent as native perennial grass populations are replaced by shrub‐ and invasive plant‐dominated systems. These patterns are similar to those observed in arid and semiarid systems around the globe, but our ability to predict which species will experience increased drought‐induced mortality in response to climate change remains limited. We investigated meteorological drought‐induced mortality of nine dominant plant species in the Colorado Plateau Desert by experimentally imposing a year‐round 35% precipitation reduction for eight continuous years. We distributed experimental plots across numerous plant, soil, and parent material types, resulting in 40 distinct sites across a 4,500 km 2 region of the Colorado Plateau Desert. For all 8 years, we tracked c. 400 individual plants and evaluated mortality responses to treatments within and across species, and through time. We also examined the influence of abiotic and biotic site factors in driving mortality responses. Overall, high mortality trends were driven by dominant grass species, including Achnatherum hymenoides , Pleuraphis jamesii , and Sporobolus cryptandrus . Responses varied widely from year to year and dominant shrub species were generally resistant to meteorological drought, likely due to their ability to access deeper soil water. Importantly, mortality increased in the presence of invasive species regardless of treatment, and native plant die‐off occurred even under ambient conditions, suggesting that recent climate changes are already negatively impacting dominant species in these systems. Results from this long‐term drought experiment suggest major shifts in community composition and, as a result, ecosystem function. Patterns also show that, across multiple soil and plant community types, native perennial grass species may be replaced by shrubs and invasive annuals in the Colorado Plateau Desert.
科研通智能强力驱动
Strongly Powered by AbleSci AI