避碰
运动规划
避障
障碍物
势场
路径(计算)
计算机科学
碰撞
任务(项目管理)
功能(生物学)
领域(数学)
实时计算
模拟
数学优化
人工智能
工程类
移动机器人
机器人
数学
计算机网络
系统工程
计算机安全
地理
地质学
生物
考古
纯数学
进化生物学
地球物理学
作者
Xiaojun Wu,Siyu Wu,Sheng Yuan,Xiaolong Wang,Yibo Zhou
标识
DOI:10.1109/iccar57134.2023.10151746
摘要
Aiming at the problem of path planning for multiple unmanned aerial vehicles (UAVs) in complex obstacle environ-ment, a new algorithm for obstacle avoidance and collision avoidance path planning is proposed. Based on the Artificial Potential Field (APF) method, the algorithm optimizes the attractive potential field function and the repulsive potential field function. Besides, this paper adds both a priority collision avoidance strategy between UAVs and temporary virtual target strategy. This algorithm not only improves the success rate of path planning, but also considers the collision problem when multiple UAVs cooperate to complete the task. The experimental simulation results show that, compared with the traditional APF method, the algorithm can accurately and effectively complete the path planning task in the complex obstacle environment, and realize the collaborative path planning of multi- UAV formations at the same time.
科研通智能强力驱动
Strongly Powered by AbleSci AI