From Automation to Augmentation: Redefining Engineering Design and Manufacturing in the Age of NextGen-AI

自动化 制造工程 工程类 计算机科学 机械工程
作者
Md Ferdous Alam,Austin Lentsch,Nomi Yu,Sylvia Barmack,Suhin Kim,Daron Acemoğlu,John Hart,Simon Johnson,Faez Ahmed
标识
DOI:10.21428/e4baedd9.e39b392d
摘要

In the mid-2010s, as computing and other digital technologies matured (), researchers began to speculate about a new era of innovation—with artificial intelligence (AI) as the standard-bearer of a "Fourth Industrial Revolution" (). The release of generative AI (Gen-AI) technologies (e.g., ChatGPT) in late 2022 reignited the discussion, prompting us to wonder: what are the barriers, risks, and potential rewards to using gen-AI for design and manufacturing? As Gen-AI has entered the mainstream, geopolitics and business practices have shifted. Covid-19 disrupted global supply chains, tensions with import partners have risen, and military conflicts introduce new uncertainties. As companies consider propositions like 'reshoring' or 'nearshoring/friendshoring' production (), we recognize other hindrances: suboptimal resource allocation, labor market volatility and trends toward an older and geographically mismatched workforce, and highly concentrated tech markets that foster anticompetitive business practices. As the United States expands domestic production capacity (e.g., semiconductors and electric vehicles), Gen-AI could help us overcome those challenges. To investigate the current and potential usefulness of Gen-AI in design and manufacturing, we interviewed industry experts—including engineers, manufacturers, tech executives, and entrepreneurs. They have identified many opportunities for the deployment of Gen-AI: (1) reducing the incidence of costly late-stage design changes when scaling production; (2) providing information to designers and engineers, including identifying suitable design spaces and material formulations and incorporating consumer preferences; (3) improving test data interpretation to enable rapid validation and qualification; (4) democratizing workers' access and usage of data to enable real-time insights and process adjustment; and (5) empowering less-skilled workers to be more productive and do more-expert work. Current Gen-AI solutions (e.g., ChatGPT, Claude) cannot accomplish these goals due to several key deficiencies, including the inability to provide robust, reliable, and replicable output; lack of relevant domain knowledge; unawareness of industry-standards requirements for product quality; failure to integrate seamlessly with existing workflow; and inability to simultaneously interpret data from different sources and formats. We propose a development framework for the next generation of Gen-AI tools for design and manufacturing ("NextGen-AI"): (1) provide better information about engineering tools, repositories, search methods, and other resources to augment the creative process of design; (2) integrate adherence to first principles when solving engineering problems; (3) leverage employees' experiential knowledge to improve training and performance; (4) empower workers to perform new and more-expert productive tasks rather than pursue static automation of workers' current functions; (5) create a collaborative and secure data ecosystem to train foundation models; and (6) ensure that new tools are safe and effective. These goals are extensive and will require broad-based buy-in from business leaders, operators, researchers, engineers, and policymakers. We recommend the following priorities to enable useful AI for design and manufacturing: (1) improve systems integration to ethically collect real-time data, (2) regulate data governance to ensure equal opportunity in development and ownership, (3) expand the collection of worker-safety data to assess industry-wide AI usage, (4) include engineers and operators in the development and uptake of new tools, and (5) focus on skills-complementary deployments to maximize productivity upside.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
micomico完成签到 ,获得积分10
刚刚
1秒前
姜招财完成签到,获得积分20
1秒前
2秒前
香查朵完成签到,获得积分10
2秒前
gky完成签到,获得积分10
2秒前
zhang08发布了新的文献求助10
3秒前
慕青应助糖醋排骨采纳,获得10
4秒前
nsk810431231发布了新的文献求助10
5秒前
6秒前
忧郁依霜完成签到,获得积分10
7秒前
juejue333发布了新的文献求助10
7秒前
nnnnn完成签到,获得积分10
7秒前
水果完成签到,获得积分10
8秒前
爆米花应助欻欻采纳,获得10
8秒前
9秒前
机智的灵完成签到,获得积分10
10秒前
11秒前
Yxian完成签到,获得积分10
11秒前
在水一方应助jsczszn采纳,获得10
12秒前
12秒前
坦率的匪完成签到,获得积分10
13秒前
清水发布了新的文献求助10
13秒前
14秒前
忧郁依霜发布了新的文献求助10
14秒前
加油完成签到 ,获得积分10
14秒前
kaxif完成签到,获得积分10
14秒前
15秒前
十二发布了新的文献求助20
16秒前
汉堡包应助aerjin采纳,获得10
18秒前
FashionBoy应助hedianmoony采纳,获得10
19秒前
Ray完成签到 ,获得积分10
19秒前
打打应助寒冷的奇异果采纳,获得10
19秒前
王先森发布了新的文献求助10
19秒前
爆米花应助Am采纳,获得10
20秒前
juejue333完成签到,获得积分10
20秒前
20秒前
小二郎应助海盐黑胡椒123采纳,获得10
20秒前
iwaking完成签到,获得积分10
20秒前
run完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151350
求助须知:如何正确求助?哪些是违规求助? 2802831
关于积分的说明 7850478
捐赠科研通 2460184
什么是DOI,文献DOI怎么找? 1309602
科研通“疑难数据库(出版商)”最低求助积分说明 628992
版权声明 601760