Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria Co-culture and comparative analysis of predicted models

生物吸附 藻类 朗缪尔吸附模型 废水 环境工程 污水处理 制浆造纸工业 支持向量机 化学 吸附 环境科学 植物 计算机科学 人工智能 生物 工程类 有机化学 吸附
作者
Sudarshan Sahu,Anupreet Kaur,Gursharan Singh,Shailendra Kumar Arya
出处
期刊:Chemosphere [Elsevier BV]
卷期号:355: 141791-141791
标识
DOI:10.1016/j.chemosphere.2024.141791
摘要

This research investigates into the efficacy of algae and algae-bacteria symbiosis (ABS) in efficiently decolorizing Remazol Red 5B, a prevalent dye pollutant. The investigation encompasses an exploration of the biosorption isotherm and kinetics governing the dye removal process. Additionally, various machine learning models are employed to predict the efficiency of dye removal within a co-culture system. The results demonstrate that both Desmodesmus abundans and a composite of Desmodesmus abundans and Rhodococcus pyridinivorans exhibit significant dye removal percentages of 75 ± 1% and 78 ± 1%, respectively, after 40 min. The biosorption isotherm analysis reveals a significant interaction between the adsorbate and the biosorbent, and it indicates that the Temkin model best matches the experimental data. Moreover, the Langmuir model indicates a relatively high biosorption capacity, further highlighting the potential of the algae-bacteria composite as an efficient adsorbent. Decision Trees, Random Forest, Support Vector Regression, and Artificial Neural Networks are evaluated for predicting dye removal efficiency. The Random Forest model emerges as the most accurate, exhibiting an R2 value of 0.98, while Support Vector Regression and Artificial Neural Networks also demonstrate robust predictive capabilities. This study contributes to the advancement of sustainable dye removal strategies and encourages future exploration of hybrid approaches to further enhance predictive accuracy and efficiency in wastewater treatment processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
着急的问凝关注了科研通微信公众号
刚刚
hhhh完成签到,获得积分10
1秒前
zy完成签到,获得积分10
1秒前
3秒前
3秒前
赫灵竹完成签到,获得积分10
3秒前
ye1121完成签到,获得积分10
5秒前
SciGPT应助咸鱼饭团采纳,获得10
5秒前
Vincent1990发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
9秒前
斯文听筠发布了新的文献求助10
9秒前
YT完成签到,获得积分10
9秒前
Akim应助zhaco采纳,获得10
9秒前
lww发布了新的文献求助30
11秒前
HBin完成签到,获得积分10
11秒前
浑灵安完成签到 ,获得积分10
12秒前
12秒前
zhaozhao发布了新的文献求助10
13秒前
ceceliaerr完成签到,获得积分10
14秒前
18062677029发布了新的文献求助10
14秒前
CipherSage应助卡乐瑞咩吹可采纳,获得10
15秒前
16秒前
研友_ngqxV8完成签到,获得积分0
16秒前
krislan完成签到,获得积分10
17秒前
18秒前
18秒前
WillianLinnn完成签到,获得积分10
18秒前
229536051213wee完成签到,获得积分20
19秒前
19秒前
20秒前
123321321345发布了新的文献求助30
23秒前
唐俊杰发布了新的文献求助10
23秒前
23秒前
gjh发布了新的文献求助10
24秒前
甜味白开水完成签到,获得积分10
24秒前
严金鱼完成签到,获得积分20
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800