Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria Co-culture and comparative analysis of predicted models

生物吸附 藻类 朗缪尔吸附模型 废水 环境工程 污水处理 制浆造纸工业 支持向量机 化学 吸附 环境科学 植物 计算机科学 人工智能 生物 工程类 有机化学 吸附
作者
Sudarshan Sahu,Anupreet Kaur,Gursharan Singh,Shailendra Kumar Arya
出处
期刊:Chemosphere [Elsevier BV]
卷期号:355: 141791-141791
标识
DOI:10.1016/j.chemosphere.2024.141791
摘要

This research investigates into the efficacy of algae and algae-bacteria symbiosis (ABS) in efficiently decolorizing Remazol Red 5B, a prevalent dye pollutant. The investigation encompasses an exploration of the biosorption isotherm and kinetics governing the dye removal process. Additionally, various machine learning models are employed to predict the efficiency of dye removal within a co-culture system. The results demonstrate that both Desmodesmus abundans and a composite of Desmodesmus abundans and Rhodococcus pyridinivorans exhibit significant dye removal percentages of 75 ± 1% and 78 ± 1%, respectively, after 40 min. The biosorption isotherm analysis reveals a significant interaction between the adsorbate and the biosorbent, and it indicates that the Temkin model best matches the experimental data. Moreover, the Langmuir model indicates a relatively high biosorption capacity, further highlighting the potential of the algae-bacteria composite as an efficient adsorbent. Decision Trees, Random Forest, Support Vector Regression, and Artificial Neural Networks are evaluated for predicting dye removal efficiency. The Random Forest model emerges as the most accurate, exhibiting an R2 value of 0.98, while Support Vector Regression and Artificial Neural Networks also demonstrate robust predictive capabilities. This study contributes to the advancement of sustainable dye removal strategies and encourages future exploration of hybrid approaches to further enhance predictive accuracy and efficiency in wastewater treatment processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助qq16采纳,获得10
刚刚
无限尔云发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
佳子发布了新的文献求助20
2秒前
敬老院N号应助飞快的薯片采纳,获得30
2秒前
3秒前
文茵发布了新的文献求助10
3秒前
3秒前
要减肥向日葵完成签到,获得积分10
3秒前
4秒前
4秒前
辣椒炖桃完成签到,获得积分10
4秒前
雪白的雪完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
AXDBB发布了新的文献求助10
5秒前
壶十二完成签到,获得积分10
6秒前
马素娜发布了新的文献求助10
6秒前
希望天下0贩的0应助周浅采纳,获得10
6秒前
lpp32发布了新的文献求助50
7秒前
woobinhua发布了新的文献求助10
7秒前
7秒前
milly发布了新的文献求助20
8秒前
Jasper应助刘晓丹采纳,获得10
8秒前
在水一方应助巴黎的防采纳,获得10
9秒前
Jameszhuo发布了新的文献求助10
9秒前
9秒前
mingzzz1发布了新的文献求助30
10秒前
月初完成签到 ,获得积分10
10秒前
10秒前
11秒前
脑洞疼应助无限尔云采纳,获得10
11秒前
11秒前
华仔应助佳子采纳,获得10
11秒前
11秒前
12秒前
徐高梁完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149