Integrating biosorption and machine learning for efficient remazol red removal by algae-bacteria Co-culture and comparative analysis of predicted models

生物吸附 藻类 朗缪尔吸附模型 废水 环境工程 污水处理 制浆造纸工业 支持向量机 化学 吸附 环境科学 植物 计算机科学 人工智能 生物 工程类 有机化学 吸附
作者
Sudarshan Sahu,Anupreet Kaur,Gursharan Singh,Shailendra Kumar Arya
出处
期刊:Chemosphere [Elsevier]
卷期号:355: 141791-141791
标识
DOI:10.1016/j.chemosphere.2024.141791
摘要

This research investigates into the efficacy of algae and algae-bacteria symbiosis (ABS) in efficiently decolorizing Remazol Red 5B, a prevalent dye pollutant. The investigation encompasses an exploration of the biosorption isotherm and kinetics governing the dye removal process. Additionally, various machine learning models are employed to predict the efficiency of dye removal within a co-culture system. The results demonstrate that both Desmodesmus abundans and a composite of Desmodesmus abundans and Rhodococcus pyridinivorans exhibit significant dye removal percentages of 75 ± 1% and 78 ± 1%, respectively, after 40 min. The biosorption isotherm analysis reveals a significant interaction between the adsorbate and the biosorbent, and it indicates that the Temkin model best matches the experimental data. Moreover, the Langmuir model indicates a relatively high biosorption capacity, further highlighting the potential of the algae-bacteria composite as an efficient adsorbent. Decision Trees, Random Forest, Support Vector Regression, and Artificial Neural Networks are evaluated for predicting dye removal efficiency. The Random Forest model emerges as the most accurate, exhibiting an R2 value of 0.98, while Support Vector Regression and Artificial Neural Networks also demonstrate robust predictive capabilities. This study contributes to the advancement of sustainable dye removal strategies and encourages future exploration of hybrid approaches to further enhance predictive accuracy and efficiency in wastewater treatment processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
司空元正完成签到 ,获得积分10
3秒前
科目三应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
AN应助科研通管家采纳,获得30
4秒前
科目三应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
核桃应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
情怀应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
AN应助科研通管家采纳,获得50
5秒前
111发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
momo发布了新的文献求助10
8秒前
10秒前
12秒前
Pattis完成签到 ,获得积分10
13秒前
红红发布了新的文献求助10
13秒前
Solkatt发布了新的文献求助10
15秒前
gavin完成签到 ,获得积分10
15秒前
小马甲应助tracy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439