亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states

脑电图 特征(语言学) 冲程(发动机) 任务(项目管理) 人工智能 计算机科学 深度学习 功能连接 物理医学与康复 模式识别(心理学) 机器学习 心理学 医学 神经科学 工程类 哲学 经济 管理 机械工程 语言学
作者
Ping-Ju Lin,Wei Li,Xiaoxue Zhai,Jingyao Sun,Yu Pan,Linhong Ji,Chong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127622-127622 被引量:13
标识
DOI:10.1016/j.neucom.2024.127622
摘要

Stroke is the leading cause of adult disability among all prevalent pathologies around the world. To improve post-stroke patients' active daily life and living quality, revealing the underlying brain mechanism of stroke recovery is crucial. The EEG feature signals (power spectrum density and functional connectivity) in two different states (eyes-close, eyes-open) show their ability as predictors in post-stroke recovery. In addition, deep learning methods can successfully extract EEG features to predict. To this end, we propose an advanced multi-input deep-learning framework that can extract multi-EEG feature signals and explain results from EEG feature inputs for stroke patients. A total of 72 post-stroke patients were recruited in this study. Each would be asked to participate in two experiments (eyes-closed and eyes-open resting state). The deep learning framework would be based on their EEG feature signals to predict their task states. AM-EEGNet achieves high performance (Accuracy: 97.22%, Sensitivity: 0.94, and Specificity: 1.00) in the EEG-based states classification problems. In addition, we demonstrated the explanation result from EEG features. Our results suggest that AM-EEGNet is robust enough to learn EEG features from stroke patients and can explain the EEG features related to tasks. Moreover, our results reveal the difference in those two eyes-close and eyes-open resting states for stroke patients. Model details can be found at https://github.com/linbingru/am-eegnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Jason完成签到 ,获得积分10
4秒前
Ykaor完成签到 ,获得积分10
5秒前
5秒前
Owen应助hugo采纳,获得10
14秒前
科研通AI6应助临子采纳,获得10
15秒前
Yikao完成签到 ,获得积分10
17秒前
21秒前
25秒前
CodeCraft应助临子采纳,获得10
26秒前
38秒前
量子星尘发布了新的文献求助10
40秒前
43秒前
临子发布了新的文献求助10
48秒前
Saturday完成签到 ,获得积分10
48秒前
春和景明完成签到,获得积分20
49秒前
51秒前
51秒前
科研通AI6应助虚化采纳,获得100
55秒前
找文献真的好难完成签到,获得积分10
55秒前
春和景明发布了新的文献求助10
56秒前
59秒前
我是老大应助美丽的靖雁采纳,获得10
1分钟前
香蕉觅云应助endocrine采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
小白发布了新的文献求助10
1分钟前
1分钟前
小二郎应助唠叨的秋蝶采纳,获得10
1分钟前
1分钟前
1分钟前
马克叔叔发布了新的文献求助10
1分钟前
初初见你完成签到,获得积分10
1分钟前
1分钟前
1分钟前
endocrine发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432233
求助须知:如何正确求助?哪些是违规求助? 4544929
关于积分的说明 14194781
捐赠科研通 4464245
什么是DOI,文献DOI怎么找? 2447012
邀请新用户注册赠送积分活动 1438313
关于科研通互助平台的介绍 1415151