AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states

脑电图 特征(语言学) 冲程(发动机) 任务(项目管理) 人工智能 计算机科学 深度学习 功能连接 物理医学与康复 模式识别(心理学) 机器学习 心理学 医学 神经科学 机械工程 工程类 语言学 哲学 管理 经济
作者
Ping-Ju Lin,Wei Li,Xiaoxue Zhai,Jingyao Sun,Yu Pan,Linhong Ji,Chong Li
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:585: 127622-127622 被引量:7
标识
DOI:10.1016/j.neucom.2024.127622
摘要

Stroke is the leading cause of adult disability among all prevalent pathologies around the world. To improve post-stroke patients' active daily life and living quality, revealing the underlying brain mechanism of stroke recovery is crucial. The EEG feature signals (power spectrum density and functional connectivity) in two different states (eyes-close, eyes-open) show their ability as predictors in post-stroke recovery. In addition, deep learning methods can successfully extract EEG features to predict. To this end, we propose an advanced multi-input deep-learning framework that can extract multi-EEG feature signals and explain results from EEG feature inputs for stroke patients. A total of 72 post-stroke patients were recruited in this study. Each would be asked to participate in two experiments (eyes-closed and eyes-open resting state). The deep learning framework would be based on their EEG feature signals to predict their task states. AM-EEGNet achieves high performance (Accuracy: 97.22%, Sensitivity: 0.94, and Specificity: 1.00) in the EEG-based states classification problems. In addition, we demonstrated the explanation result from EEG features. Our results suggest that AM-EEGNet is robust enough to learn EEG features from stroke patients and can explain the EEG features related to tasks. Moreover, our results reveal the difference in those two eyes-close and eyes-open resting states for stroke patients. Model details can be found at https://github.com/linbingru/am-eegnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助hanghang采纳,获得20
刚刚
香蕉觅云应助Qwe采纳,获得10
1秒前
清仔完成签到,获得积分10
1秒前
眼睛大的怀曼完成签到,获得积分10
1秒前
害羞的裘完成签到 ,获得积分10
2秒前
Lyn发布了新的文献求助10
3秒前
4秒前
123发布了新的文献求助10
4秒前
大鱼应助小鼠星球采纳,获得10
5秒前
5秒前
秀丽莛完成签到,获得积分10
7秒前
佳佳应助cis2014采纳,获得10
7秒前
念所三旬完成签到,获得积分10
8秒前
温暖静柏完成签到,获得积分10
9秒前
9秒前
11秒前
温乘云完成签到,获得积分10
11秒前
12秒前
lukawa完成签到,获得积分10
12秒前
12秒前
13秒前
慕青应助DueR采纳,获得10
14秒前
风清扬应助cab_rose采纳,获得10
14秒前
15秒前
15秒前
chase发布了新的文献求助10
16秒前
16秒前
17秒前
佐zzz完成签到 ,获得积分10
18秒前
111222发布了新的文献求助10
18秒前
18秒前
研友_VZG7GZ应助gogoyoco采纳,获得10
19秒前
Owen应助大鱼采纳,获得10
19秒前
19秒前
19秒前
19秒前
霜鸣发布了新的文献求助10
20秒前
漂亮元灵发布了新的文献求助10
20秒前
科研通AI5应助ss采纳,获得30
21秒前
bbh发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176