AM-EEGNet: An advanced multi-input deep learning framework for classifying stroke patient EEG task states

脑电图 特征(语言学) 冲程(发动机) 任务(项目管理) 人工智能 计算机科学 深度学习 功能连接 物理医学与康复 模式识别(心理学) 机器学习 心理学 医学 神经科学 机械工程 工程类 语言学 哲学 管理 经济
作者
Ping-Ju Lin,Wei Li,Xiaoxue Zhai,Jingyao Sun,Yu Pan,Linhong Ji,Chong Li
出处
期刊:Neurocomputing [Elsevier]
卷期号:585: 127622-127622 被引量:4
标识
DOI:10.1016/j.neucom.2024.127622
摘要

Stroke is the leading cause of adult disability among all prevalent pathologies around the world. To improve post-stroke patients' active daily life and living quality, revealing the underlying brain mechanism of stroke recovery is crucial. The EEG feature signals (power spectrum density and functional connectivity) in two different states (eyes-close, eyes-open) show their ability as predictors in post-stroke recovery. In addition, deep learning methods can successfully extract EEG features to predict. To this end, we propose an advanced multi-input deep-learning framework that can extract multi-EEG feature signals and explain results from EEG feature inputs for stroke patients. A total of 72 post-stroke patients were recruited in this study. Each would be asked to participate in two experiments (eyes-closed and eyes-open resting state). The deep learning framework would be based on their EEG feature signals to predict their task states. AM-EEGNet achieves high performance (Accuracy: 97.22%, Sensitivity: 0.94, and Specificity: 1.00) in the EEG-based states classification problems. In addition, we demonstrated the explanation result from EEG features. Our results suggest that AM-EEGNet is robust enough to learn EEG features from stroke patients and can explain the EEG features related to tasks. Moreover, our results reveal the difference in those two eyes-close and eyes-open resting states for stroke patients. Model details can be found at https://github.com/linbingru/am-eegnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李铁路发布了新的文献求助10
刚刚
刚刚
好好学习发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
yaswer发布了新的文献求助10
1秒前
默笙发布了新的文献求助10
1秒前
张张孟孟发布了新的文献求助10
2秒前
2秒前
2秒前
ss完成签到,获得积分10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
cocolu应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
毛豆爸爸应助FENGHUI采纳,获得20
5秒前
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
温暖天与应助科研通管家采纳,获得10
5秒前
读研好难发布了新的文献求助10
5秒前
zc_0116应助科研通管家采纳,获得10
5秒前
111应助科研通管家采纳,获得20
5秒前
桐桐应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
烟花应助白白采纳,获得10
6秒前
6秒前
6秒前
震动的筮发布了新的文献求助10
7秒前
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708