亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applicability of machine learning techniques in predicting wheat yield based on remote sensing and climate data in Pakistan, South Asia

归一化差异植被指数 随机森林 增强植被指数 支持向量机 蒸散量 植被(病理学) 线性回归 统计 数学 产量(工程) 均方误差 背景(考古学) 索引(排版) Lasso(编程语言) 机器学习 叶面积指数 植被指数 计算机科学 地理 农学 生态学 病理 考古 万维网 生物 冶金 材料科学 医学
作者
Sana Arshad,Syed Jamil Hasan Kazmi,Muhammad Gohar Javed,Safwan Mohammed
出处
期刊:European Journal of Agronomy [Elsevier BV]
卷期号:147: 126837-126837 被引量:28
标识
DOI:10.1016/j.eja.2023.126837
摘要

Machine learning (ML) algorithms perform better than classical statistical approaches to explore hidden nonlinear relationships. In this context, the goal of this research is to predict wheat yield utilizing remote sensing and climatic data in southern part of Pakistan. Four remote sensing indices, viz.., Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI) are integrated with five climatic variables, i.e., Maximum Temperature (Tmax), Minimum Temperature (Tmin), Rainfall (R), Relative humidity (RH) and windspeed (WS) and one drought index, i.e., Standardized Precipitation Evapotranspiration Index (SPEI). Eight model combinations are built within two scenarios of wheat season, i.e., Whole Seasonal mean (WSM) (SC1), and Peak of Seasonal Mean (POSM) (SC2). Two nonlinear ML algorithms, i.e., Random Forest (RF), and Support Vector Machines (SVM), and one linear model, i.e., LASSO is being employed for wheat yield prediction to find the best combination and ML algorithm in two scenarios. Results revealed that in SC1, RF regression for the model combination (GNDVI +Tmax+ Tmin + R + RH + WS) outperformed other models (R2 = 0.71, RMSE = 2.365). Similarly, in SC2 RF regression outperformed SVM with model combination (GNDVI + Tmax+ Tmin + R + RH + WS) performed highest with R2 = 0.78, and lowest RMSE = 2.07, followed by (GNDVI + SPEI + RH + WS; R2 = 0.75). Interestingly, linear LASSSO also performed equally with RF with R2 = 0.77–0.73 in both scenarios. However, the output of this research recommends using SC2 for yield prediction in ML models. Overall, this research reveals the significance and potential of ML techniques for timely prediction of crop yield in different stages of crop growth that provide a solid foundation for food security in the region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
Hayat发布了新的文献求助200
22秒前
32秒前
垚祎发布了新的文献求助10
36秒前
44秒前
1分钟前
Aspirin发布了新的文献求助10
1分钟前
1分钟前
研友_VZG7GZ应助YI采纳,获得10
1分钟前
汉堡包应助Aspirin采纳,获得10
1分钟前
李健应助LDHUSH采纳,获得10
1分钟前
mashibeo完成签到,获得积分10
2分钟前
Thien应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
垚祎发布了新的文献求助10
2分钟前
ai zs发布了新的文献求助10
2分钟前
Aspirin发布了新的文献求助10
2分钟前
3分钟前
aaefv完成签到,获得积分10
3分钟前
LDHUSH发布了新的文献求助10
3分钟前
张璟博发布了新的文献求助10
3分钟前
张璟博完成签到,获得积分10
3分钟前
3分钟前
彭于晏应助LDHUSH采纳,获得10
3分钟前
舒服的觅夏完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
LDHUSH发布了新的文献求助10
4分钟前
Aspirin发布了新的文献求助10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
wanci应助LDHUSH采纳,获得10
5分钟前
5分钟前
feijelly完成签到 ,获得积分10
5分钟前
6分钟前
LDHUSH发布了新的文献求助10
6分钟前
6分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725380
求助须知:如何正确求助?哪些是违规求助? 3270333
关于积分的说明 9965539
捐赠科研通 2985342
什么是DOI,文献DOI怎么找? 1637937
邀请新用户注册赠送积分活动 777774
科研通“疑难数据库(出版商)”最低求助积分说明 747223