Isolated Electron Trap‐Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production

光催化 纳米棒 制氢 催化作用 电子 分解水 载流子 光化学 材料科学 光催化分解水 电子转移 重组 化学 化学工程 纳米技术 光电子学 物理 生物化学 有机化学 量子力学 基因 工程类
作者
Wenhuan Huang,Chenyang Su,Chen Zhu,Tingting Bo,Shouwei Zuo,Wei Zhou,Yuanfu Ren,Yanan Zhang,Jing Zhang,Magnus Rueping,Huabin Zhang
出处
期刊:Angewandte Chemie [Wiley]
卷期号:62 (25) 被引量:79
标识
DOI:10.1002/anie.202304634
摘要

Angewandte Chemie International EditionVolume 62, Issue 25 e202304634 Communication Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production Prof. Dr. Wenhuan Huang, Prof. Dr. Wenhuan Huang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. China KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (lead)Search for more papers by this authorChenyang Su, Chenyang Su Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorDr. Chen Zhu, Dr. Chen Zhu KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorDr. Tingting Bo, Dr. Tingting Bo Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. ChinaSearch for more papers by this authorDr. Shouwei Zuo, Dr. Shouwei Zuo KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Wei Zhou, Prof. Wei Zhou Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. China Contribution: Conceptualization (supporting)Search for more papers by this authorYuanfu Ren, Yuanfu Ren KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Yanan Zhang, Prof. Yanan Zhang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorProf. Jing Zhang, Prof. Jing Zhang Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. ChinaSearch for more papers by this authorProf. Magnus Rueping, Corresponding Author Prof. Magnus Rueping [email protected] KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (equal)Search for more papers by this authorProf. Huabin Zhang, Corresponding Author Prof. Huabin Zhang [email protected] orcid.org/0000-0003-1601-2471 KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this author Prof. Dr. Wenhuan Huang, Prof. Dr. Wenhuan Huang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. China KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (lead)Search for more papers by this authorChenyang Su, Chenyang Su Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorDr. Chen Zhu, Dr. Chen Zhu KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorDr. Tingting Bo, Dr. Tingting Bo Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. ChinaSearch for more papers by this authorDr. Shouwei Zuo, Dr. Shouwei Zuo KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Wei Zhou, Prof. Wei Zhou Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. China Contribution: Conceptualization (supporting)Search for more papers by this authorYuanfu Ren, Yuanfu Ren KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Yanan Zhang, Prof. Yanan Zhang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorProf. Jing Zhang, Prof. Jing Zhang Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. ChinaSearch for more papers by this authorProf. Magnus Rueping, Corresponding Author Prof. Magnus Rueping [email protected] KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (equal)Search for more papers by this authorProf. Huabin Zhang, Corresponding Author Prof. Huabin Zhang [email protected] orcid.org/0000-0003-1601-2471 KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this author First published: 19 April 2023 https://doi.org/10.1002/anie.202304634Citations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1. Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency. Abstract The solar-driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron-hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1 (226.4 μmol h−1; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description anie202304634-sup-0001-misc_information.pdf2 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 2016, 1, 16151. 10.1038/nenergy.2016.151 CASWeb of Science®Google Scholar 2A. Fujishima, K. Honda, Nature 1972, 238, 37–38. 10.1038/238037a0 CASPubMedWeb of Science®Google Scholar 3H. Lin, S. Luo, H. Zhang, J. Ye, Joule 2022, 6, 294–314. 10.1016/j.joule.2022.01.001 CASWeb of Science®Google Scholar 4C. Feng, Z. P. Wu, K. W. Huang, J. Ye, H. Zhang, Adv. Mater. 2022, 34, 2200180. 10.1002/adma.202200180 CASWeb of Science®Google Scholar 5M. Liu, D. Jing, Z. Zhou, L. Guo, Nat. Commun. 2013, 4, 2278. 10.1038/ncomms3278 PubMedWeb of Science®Google Scholar 6J. Ran, H. Zhang, S. Fu, M. Jaroniec, J. Shan, B. Xia, Y. Qu, J. Qu, S. Chen, L. Song, Nat. Commun. 2022, 13, 4600. 10.1038/s41467-022-32256-6 CASPubMedWeb of Science®Google Scholar 7S.-K. Lee, A. Mills, C. O'Rourke, Chem. Soc. Rev. 2017, 46, 4877–4894. 10.1039/C7CS00136C CASPubMedWeb of Science®Google Scholar 8X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80. 10.1038/nmat2317 CASPubMedWeb of Science®Google Scholar 9H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1804883. 10.1002/adma.201804883 Web of Science®Google Scholar 10H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang, J. Zhang, X. W. Lou, Sci. Adv. 2020, 6, eabb9823. 10.1126/sciadv.abb9823 CASPubMedWeb of Science®Google Scholar 11Z.-H. Xue, D. Luan, H. Zhang, X. W. D. Lou, Joule 2022, 6, 92–133. 10.1016/j.joule.2021.12.011 CASWeb of Science®Google Scholar 12H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang, X. W. D. Lou, J. Am. Chem. Soc. 2021, 143, 2173–2177. 10.1021/jacs.0c08409 CASPubMedWeb of Science®Google Scholar 13L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423. 10.1038/nchem.1301 CASPubMedWeb of Science®Google Scholar 14M. Z. Rahman, T. Edvinsson, J. Gascon, Nat. Chem. Rev. 2022, 6, 243–258. 10.1038/s41570-022-00366-w PubMedWeb of Science®Google Scholar 15S. J. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 2015, 8, 731–759. 10.1039/C4EE03271C CASWeb of Science®Google Scholar 16C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Nat. Rev. Mater. 2021, 6, 560–586. 10.1038/s41578-021-00289-w CASWeb of Science®Google Scholar 17A. J. Tanner, G. Thornton, J. Phys. Chem. Lett. 2022, 13, 559–566. 10.1021/acs.jpclett.1c03677 CASPubMedWeb of Science®Google Scholar 18S. Bandaranayake, E. Hruska, S. Londo, S. Biswas, L. R. Baker, J. Phys. Chem. C 2020, 124, 22853–22870. 10.1021/acs.jpcc.0c07047 CASWeb of Science®Google Scholar 19A. J. Tanner, B. Wen, Y. Zhang, L.-M. Liu, H. H. Fielding, A. Selloni, G. Thornton, Phys. Rev. B 2021, 103, L121402. 10.1103/PhysRevB.103.L121402 CASWeb of Science®Google Scholar 20X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699. 10.1038/s41560-019-0431-1 CASWeb of Science®Google Scholar 21H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai, X. Li, G. G. Gurzadyan, J. Hou, H. Yang, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202208904. 10.1002/anie.202208904 CASPubMedWeb of Science®Google Scholar 22L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109. 10.1021/jacs.2c06920 CASPubMedWeb of Science®Google Scholar 23Z. Pei, X. F. Lu, H. Zhang, Y. Li, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2022, 61, e202207537. 10.1002/anie.202207537 CASPubMedWeb of Science®Google Scholar 24H. Zhang, W. Cheng, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2021, 60, 13177–13196. 10.1002/anie.202014112 CASPubMedWeb of Science®Google Scholar 25X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Nano-Micro Lett. 2021, 13, 136. 10.1007/s40820-021-00668-6 CASPubMedWeb of Science®Google Scholar 26H. Zhang, L. Yu, T. Chen, W. Zhou, X. W. Lou, Adv. Funct. Mater. 2018, 28, 1807086. 10.1002/adfm.201807086 Web of Science®Google Scholar 27G. Liu, A. W. Robertson, M. M.-J. Li, W. C. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, Nat. Chem. 2017, 9, 810–816. 10.1038/nchem.2740 CASPubMedWeb of Science®Google Scholar 28H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, Nat. Catal. 2018, 1, 63–72. 10.1038/s41929-017-0008-y CASWeb of Science®Google Scholar 29A. Gaur, M. Stehle, K. V. Raun, J. Thrane, A. D. Jensen, J.-D. Grunwaldt, M. Høj, Phys. Chem. Chem. Phys. 2020, 22, 11713–11723. 10.1039/D0CP01506G CASPubMedWeb of Science®Google Scholar 30H. Aritani, T. Tanaka, T. Funabiki, S. Yoshida, K. Eda, N. Sotani, M. Kudo, S. Hasegawa, J. Phys. Chem. 1996, 100, 19495–19501. 10.1021/jp9615464 CASWeb of Science®Google Scholar 31R. Q. Yao, H. Shi, W. B. Wan, Z. Wen, X. Y. Lang, Q. Jiang, Adv. Mater. 2020, 32, 1907214. 10.1002/adma.201907214 CASWeb of Science®Google Scholar 32J. A. Bau, R. Ahmad, L. Cavallo, M. Rueping, ACS Energy Lett. 2022, 7, 3695–3702. 10.1021/acsenergylett.2c02053 CASWeb of Science®Google Scholar 33J. A. Bau, A.-H. Emwas, P. Nikolaienko, A. A. Aljarb, V. Tung, M. Rueping, Nat. Catal. 2022, 5, 397–404. 10.1038/s41929-022-00781-8 CASWeb of Science®Google Scholar 34W. Huang, T. Bo, S. Zuo, Y. Wang, J. Chen, S. Ould-Chikh, Y. Li, W. Zhou, J. Zhang, H. Zhang, SusMat 2022, 2, 466–475. 10.1002/sus2.76 CASGoogle Scholar 35N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, J. Am. Chem. Soc. 2018, 140, 9434–9443. 10.1021/jacs.8b02076 CASPubMedWeb of Science®Google Scholar 36J. Kosco, M. Bidwell, H. Cha, T. Martin, C. T. Howells, M. Sachs, D. H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, Nat. Mater. 2020, 19, 559–565. 10.1038/s41563-019-0591-1 CASPubMedWeb of Science®Google Scholar 37R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Adv. Mater. 2014, 26, 4783–4788. 10.1002/adma.201400428 CASPubMedWeb of Science®Google Scholar 38Y. Kageshima, S. Shiga, T. Ode, F. Takagi, H. Shiiba, M. T. Htay, Y. Hashimoto, K. Teshima, K. Domen, H. Nishikiori, J. Am. Chem. Soc. 2021, 143, 5698–5708. 10.1021/jacs.0c12140 CASPubMedWeb of Science®Google Scholar Citing Literature Volume62, Issue25June 19, 2023e202304634 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
倾心红枫林完成签到,获得积分10
刚刚
缓慢的白梦完成签到 ,获得积分10
1秒前
我思故我在完成签到,获得积分0
1秒前
coinc完成签到,获得积分10
1秒前
vexille完成签到,获得积分10
1秒前
机灵诺言完成签到,获得积分10
1秒前
在水一方应助shiqiang mu采纳,获得10
2秒前
Owen应助来了来了采纳,获得10
3秒前
3秒前
源歌发布了新的文献求助10
4秒前
4秒前
lllby完成签到,获得积分10
4秒前
longyuyan完成签到,获得积分10
4秒前
祖逸凡完成签到,获得积分10
6秒前
6秒前
小二郎应助aaaaa采纳,获得10
7秒前
Owen应助勤劳的皮皮虾采纳,获得10
7秒前
7秒前
yyr完成签到 ,获得积分10
7秒前
锵锵锵发布了新的文献求助10
7秒前
8秒前
整齐百褶裙完成签到 ,获得积分10
8秒前
8秒前
深情安青应助宁宁采纳,获得10
8秒前
8秒前
子俞完成签到,获得积分10
8秒前
平常寄柔完成签到,获得积分20
9秒前
开朗方盒发布了新的文献求助10
11秒前
木虫发布了新的文献求助10
11秒前
橘子发布了新的文献求助10
11秒前
12秒前
生工跑路ing完成签到,获得积分10
12秒前
小布可嘁完成签到 ,获得积分10
12秒前
嘉人完成签到 ,获得积分10
12秒前
wanci应助flsqw采纳,获得10
13秒前
脑洞疼应助子俞采纳,获得10
13秒前
漂亮凌旋完成签到,获得积分10
13秒前
13秒前
wqc2060完成签到,获得积分10
13秒前
Leo完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158979
求助须知:如何正确求助?哪些是违规求助? 2810153
关于积分的说明 7886308
捐赠科研通 2468968
什么是DOI,文献DOI怎么找? 1314533
科研通“疑难数据库(出版商)”最低求助积分说明 630640
版权声明 602012