摘要
Angewandte Chemie International EditionVolume 62, Issue 25 e202304634 Communication Isolated Electron Trap-Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production Prof. Dr. Wenhuan Huang, Prof. Dr. Wenhuan Huang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. China KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (lead)Search for more papers by this authorChenyang Su, Chenyang Su Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorDr. Chen Zhu, Dr. Chen Zhu KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorDr. Tingting Bo, Dr. Tingting Bo Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. ChinaSearch for more papers by this authorDr. Shouwei Zuo, Dr. Shouwei Zuo KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Wei Zhou, Prof. Wei Zhou Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. China Contribution: Conceptualization (supporting)Search for more papers by this authorYuanfu Ren, Yuanfu Ren KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Yanan Zhang, Prof. Yanan Zhang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorProf. Jing Zhang, Prof. Jing Zhang Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. ChinaSearch for more papers by this authorProf. Magnus Rueping, Corresponding Author Prof. Magnus Rueping [email protected] KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (equal)Search for more papers by this authorProf. Huabin Zhang, Corresponding Author Prof. Huabin Zhang [email protected] orcid.org/0000-0003-1601-2471 KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this author Prof. Dr. Wenhuan Huang, Prof. Dr. Wenhuan Huang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. China KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (lead)Search for more papers by this authorChenyang Su, Chenyang Su Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorDr. Chen Zhu, Dr. Chen Zhu KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorDr. Tingting Bo, Dr. Tingting Bo Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. ChinaSearch for more papers by this authorDr. Shouwei Zuo, Dr. Shouwei Zuo KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Wei Zhou, Prof. Wei Zhou Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072 P. R. China Contribution: Conceptualization (supporting)Search for more papers by this authorYuanfu Ren, Yuanfu Ren KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this authorProf. Yanan Zhang, Prof. Yanan Zhang Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021 P. R. ChinaSearch for more papers by this authorProf. Jing Zhang, Prof. Jing Zhang Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 P. R. ChinaSearch for more papers by this authorProf. Magnus Rueping, Corresponding Author Prof. Magnus Rueping [email protected] KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Contribution: Conceptualization (equal)Search for more papers by this authorProf. Huabin Zhang, Corresponding Author Prof. Huabin Zhang [email protected] orcid.org/0000-0003-1601-2471 KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi ArabiaSearch for more papers by this author First published: 19 April 2023 https://doi.org/10.1002/anie.202304634Citations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1. Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency. Abstract The solar-driven evolution of hydrogen from water using particulate photocatalysts is considered one of the most economical and promising protocols for achieving a stable supply of renewable energy. However, the efficiency of photocatalytic water splitting is far from satisfactory due to the sluggish electron-hole pair separation kinetics. Herein, isolated Mo atoms in a high oxidation state have been incorporated into the lattice of Cd0.5Zn0.5S (CZS@Mo) nanorods, which exhibit photocatalytic hydrogen evolution rate of 11.32 mmol g−1 h−1 (226.4 μmol h−1; catalyst dosage 20 mg). Experimental and theoretical simulation results imply that the highly oxidized Mo species lead to mobile-charge imbalances in CZS and induce the directional photogenerated electrons transfer, resulting in effectively inhibited electron-hole recombination and greatly enhanced photocatalytic efficiency. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description anie202304634-sup-0001-misc_information.pdf2 MB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Nat. Energy 2016, 1, 16151. 10.1038/nenergy.2016.151 CASWeb of Science®Google Scholar 2A. Fujishima, K. Honda, Nature 1972, 238, 37–38. 10.1038/238037a0 CASPubMedWeb of Science®Google Scholar 3H. Lin, S. Luo, H. Zhang, J. Ye, Joule 2022, 6, 294–314. 10.1016/j.joule.2022.01.001 CASWeb of Science®Google Scholar 4C. Feng, Z. P. Wu, K. W. Huang, J. Ye, H. Zhang, Adv. Mater. 2022, 34, 2200180. 10.1002/adma.202200180 CASWeb of Science®Google Scholar 5M. Liu, D. Jing, Z. Zhou, L. Guo, Nat. Commun. 2013, 4, 2278. 10.1038/ncomms3278 PubMedWeb of Science®Google Scholar 6J. Ran, H. Zhang, S. Fu, M. Jaroniec, J. Shan, B. Xia, Y. Qu, J. Qu, S. Chen, L. Song, Nat. Commun. 2022, 13, 4600. 10.1038/s41467-022-32256-6 CASPubMedWeb of Science®Google Scholar 7S.-K. Lee, A. Mills, C. O'Rourke, Chem. Soc. Rev. 2017, 46, 4877–4894. 10.1039/C7CS00136C CASPubMedWeb of Science®Google Scholar 8X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80. 10.1038/nmat2317 CASPubMedWeb of Science®Google Scholar 9H. Zhang, P. Zhang, M. Qiu, J. Dong, Y. Zhang, X. W. Lou, Adv. Mater. 2019, 31, 1804883. 10.1002/adma.201804883 Web of Science®Google Scholar 10H. Zhang, S. Zuo, M. Qiu, S. Wang, Y. Zhang, J. Zhang, X. W. Lou, Sci. Adv. 2020, 6, eabb9823. 10.1126/sciadv.abb9823 CASPubMedWeb of Science®Google Scholar 11Z.-H. Xue, D. Luan, H. Zhang, X. W. D. Lou, Joule 2022, 6, 92–133. 10.1016/j.joule.2021.12.011 CASWeb of Science®Google Scholar 12H. Zhang, Y. Wang, S. Zuo, W. Zhou, J. Zhang, X. W. D. Lou, J. Am. Chem. Soc. 2021, 143, 2173–2177. 10.1021/jacs.0c08409 CASPubMedWeb of Science®Google Scholar 13L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423. 10.1038/nchem.1301 CASPubMedWeb of Science®Google Scholar 14M. Z. Rahman, T. Edvinsson, J. Gascon, Nat. Chem. Rev. 2022, 6, 243–258. 10.1038/s41570-022-00366-w PubMedWeb of Science®Google Scholar 15S. J. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 2015, 8, 731–759. 10.1039/C4EE03271C CASWeb of Science®Google Scholar 16C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Nat. Rev. Mater. 2021, 6, 560–586. 10.1038/s41578-021-00289-w CASWeb of Science®Google Scholar 17A. J. Tanner, G. Thornton, J. Phys. Chem. Lett. 2022, 13, 559–566. 10.1021/acs.jpclett.1c03677 CASPubMedWeb of Science®Google Scholar 18S. Bandaranayake, E. Hruska, S. Londo, S. Biswas, L. R. Baker, J. Phys. Chem. C 2020, 124, 22853–22870. 10.1021/acs.jpcc.0c07047 CASWeb of Science®Google Scholar 19A. J. Tanner, B. Wen, Y. Zhang, L.-M. Liu, H. H. Fielding, A. Selloni, G. Thornton, Phys. Rev. B 2021, 103, L121402. 10.1103/PhysRevB.103.L121402 CASWeb of Science®Google Scholar 20X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 2019, 4, 690–699. 10.1038/s41560-019-0431-1 CASWeb of Science®Google Scholar 21H. Shi, H. Wang, Y. Zhou, J. Li, P. Zhai, X. Li, G. G. Gurzadyan, J. Hou, H. Yang, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202208904. 10.1002/anie.202208904 CASPubMedWeb of Science®Google Scholar 22L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. Leung, L. Sun, J. Hou, J. Am. Chem. Soc. 2022, 144, 17097–17109. 10.1021/jacs.2c06920 CASPubMedWeb of Science®Google Scholar 23Z. Pei, X. F. Lu, H. Zhang, Y. Li, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2022, 61, e202207537. 10.1002/anie.202207537 CASPubMedWeb of Science®Google Scholar 24H. Zhang, W. Cheng, D. Luan, X. W. Lou, Angew. Chem. Int. Ed. 2021, 60, 13177–13196. 10.1002/anie.202014112 CASPubMedWeb of Science®Google Scholar 25X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li, J. Zhang, Y. Han, Nano-Micro Lett. 2021, 13, 136. 10.1007/s40820-021-00668-6 CASPubMedWeb of Science®Google Scholar 26H. Zhang, L. Yu, T. Chen, W. Zhou, X. W. Lou, Adv. Funct. Mater. 2018, 28, 1807086. 10.1002/adfm.201807086 Web of Science®Google Scholar 27G. Liu, A. W. Robertson, M. M.-J. Li, W. C. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner, Nat. Chem. 2017, 9, 810–816. 10.1038/nchem.2740 CASPubMedWeb of Science®Google Scholar 28H. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, Nat. Catal. 2018, 1, 63–72. 10.1038/s41929-017-0008-y CASWeb of Science®Google Scholar 29A. Gaur, M. Stehle, K. V. Raun, J. Thrane, A. D. Jensen, J.-D. Grunwaldt, M. Høj, Phys. Chem. Chem. Phys. 2020, 22, 11713–11723. 10.1039/D0CP01506G CASPubMedWeb of Science®Google Scholar 30H. Aritani, T. Tanaka, T. Funabiki, S. Yoshida, K. Eda, N. Sotani, M. Kudo, S. Hasegawa, J. Phys. Chem. 1996, 100, 19495–19501. 10.1021/jp9615464 CASWeb of Science®Google Scholar 31R. Q. Yao, H. Shi, W. B. Wan, Z. Wen, X. Y. Lang, Q. Jiang, Adv. Mater. 2020, 32, 1907214. 10.1002/adma.201907214 CASWeb of Science®Google Scholar 32J. A. Bau, R. Ahmad, L. Cavallo, M. Rueping, ACS Energy Lett. 2022, 7, 3695–3702. 10.1021/acsenergylett.2c02053 CASWeb of Science®Google Scholar 33J. A. Bau, A.-H. Emwas, P. Nikolaienko, A. A. Aljarb, V. Tung, M. Rueping, Nat. Catal. 2022, 5, 397–404. 10.1038/s41929-022-00781-8 CASWeb of Science®Google Scholar 34W. Huang, T. Bo, S. Zuo, Y. Wang, J. Chen, S. Ould-Chikh, Y. Li, W. Zhou, J. Zhang, H. Zhang, SusMat 2022, 2, 466–475. 10.1002/sus2.76 CASGoogle Scholar 35N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, J. Am. Chem. Soc. 2018, 140, 9434–9443. 10.1021/jacs.8b02076 CASPubMedWeb of Science®Google Scholar 36J. Kosco, M. Bidwell, H. Cha, T. Martin, C. T. Howells, M. Sachs, D. H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, Nat. Mater. 2020, 19, 559–565. 10.1038/s41563-019-0591-1 CASPubMedWeb of Science®Google Scholar 37R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Adv. Mater. 2014, 26, 4783–4788. 10.1002/adma.201400428 CASPubMedWeb of Science®Google Scholar 38Y. Kageshima, S. Shiga, T. Ode, F. Takagi, H. Shiiba, M. T. Htay, Y. Hashimoto, K. Teshima, K. Domen, H. Nishikiori, J. Am. Chem. Soc. 2021, 143, 5698–5708. 10.1021/jacs.0c12140 CASPubMedWeb of Science®Google Scholar Citing Literature Volume62, Issue25June 19, 2023e202304634 ReferencesRelatedInformation