亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-attention and long-range relationship capture network for underwater object detection

水下 对象(语法) 航程(航空) 计算机科学 人工智能 环境科学 心理学 地质学 工程类 海洋学 航空航天工程
作者
Ziran Gao,Yanli Shi,Sha Li
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (2): 101971-101971 被引量:2
标识
DOI:10.1016/j.jksuci.2024.101971
摘要

Underwater object detection has been shown to exhibit significant potential for exploring underwater environments. However, underwater datasets often suffer from degeneration due to uneven underwater light distribution, complex underwater environment, and crowded underwater dynamic background. Thus, object detection performance would be degraded accordingly. In this paper, a large kernel convolutional object detection network based on self-attention and long-range relationship capture is proposed. Firstly, a hybrid dilated large kernel attention mechanism is proposed, which adopts the idea of hybrid dilated convolution and combines the advantages of large kernel attention mechanism and self-attention. This attention mechanism can avoid self-attention defects while achieving self-attention adaptiveness and long-range relevance. Secondly, a feature enhancement block called residual reconstructed module is proposed, which captures long-range dependencies in the network and extracts more critical contextual information, thus solving the problem of network degradation and accuracy degradation. Thirdly, an adaptive spatial feature fusion object detection head is constructed, which can directly learn how to filter different features at different feature layers spatially; useless information is filtered out, and only useful information is kept for combination to enhance the detection capability of the network further. Finally, network for underwater object detection is proposed based on the above three techniques. Extensive experiments were conducted on the well-known datasets of RUOD, Aquarium, URPC, and MS COCO. Compared to the prior state-of-the-art methods, the experimental findings demonstrate that the proposed approach obtains the highest mAP of 88.7%, 86.5%, 98.9%, and 71.4%, respectively. This represents an improvement of 1.2, 1.5, 8.5, and 0.2 percentage, in that order. The proposed model shows the capacity to function by applying self-attention to local details, as well as the capacity to grasp global long-range relationships, prioritize essential data, and spatially filter irrelevant information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
义气的书雁完成签到,获得积分10
44秒前
1分钟前
andrele发布了新的文献求助10
1分钟前
谦也静熵完成签到,获得积分10
2分钟前
通科研完成签到 ,获得积分10
2分钟前
4分钟前
andrele发布了新的文献求助10
4分钟前
陈媛发布了新的文献求助10
5分钟前
sasa发布了新的文献求助10
5分钟前
sasa完成签到,获得积分10
5分钟前
满地枫叶完成签到,获得积分20
6分钟前
joanna完成签到,获得积分10
6分钟前
满地枫叶发布了新的文献求助10
6分钟前
6分钟前
M先生完成签到,获得积分10
6分钟前
6分钟前
7分钟前
tlx发布了新的文献求助10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
小圆圈发布了新的文献求助30
8分钟前
兴奋的宛亦完成签到,获得积分20
8分钟前
zhanglongfei发布了新的文献求助10
8分钟前
8分钟前
小圆圈发布了新的文献求助10
8分钟前
9分钟前
小圆圈发布了新的文献求助10
9分钟前
李健的小迷弟应助小圆圈采纳,获得10
9分钟前
9分钟前
冬瓜排骨养生汤完成签到,获得积分10
9分钟前
10分钟前
小圆圈发布了新的文献求助10
10分钟前
vantie完成签到 ,获得积分10
10分钟前
10分钟前
zhanglongfei完成签到,获得积分10
11分钟前
Luis发布了新的文献求助10
11分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150609
求助须知:如何正确求助?哪些是违规求助? 2802008
关于积分的说明 7846050
捐赠科研通 2459372
什么是DOI,文献DOI怎么找? 1309219
科研通“疑难数据库(出版商)”最低求助积分说明 628696
版权声明 601757