Self-attention and long-range relationship capture network for underwater object detection

水下 对象(语法) 航程(航空) 计算机科学 人工智能 环境科学 心理学 地质学 工程类 海洋学 航空航天工程
作者
Ziran Gao,Yanli Shi,Sha Li
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier BV]
卷期号:36 (2): 101971-101971 被引量:2
标识
DOI:10.1016/j.jksuci.2024.101971
摘要

Underwater object detection has been shown to exhibit significant potential for exploring underwater environments. However, underwater datasets often suffer from degeneration due to uneven underwater light distribution, complex underwater environment, and crowded underwater dynamic background. Thus, object detection performance would be degraded accordingly. In this paper, a large kernel convolutional object detection network based on self-attention and long-range relationship capture is proposed. Firstly, a hybrid dilated large kernel attention mechanism is proposed, which adopts the idea of hybrid dilated convolution and combines the advantages of large kernel attention mechanism and self-attention. This attention mechanism can avoid self-attention defects while achieving self-attention adaptiveness and long-range relevance. Secondly, a feature enhancement block called residual reconstructed module is proposed, which captures long-range dependencies in the network and extracts more critical contextual information, thus solving the problem of network degradation and accuracy degradation. Thirdly, an adaptive spatial feature fusion object detection head is constructed, which can directly learn how to filter different features at different feature layers spatially; useless information is filtered out, and only useful information is kept for combination to enhance the detection capability of the network further. Finally, network for underwater object detection is proposed based on the above three techniques. Extensive experiments were conducted on the well-known datasets of RUOD, Aquarium, URPC, and MS COCO. Compared to the prior state-of-the-art methods, the experimental findings demonstrate that the proposed approach obtains the highest mAP of 88.7%, 86.5%, 98.9%, and 71.4%, respectively. This represents an improvement of 1.2, 1.5, 8.5, and 0.2 percentage, in that order. The proposed model shows the capacity to function by applying self-attention to local details, as well as the capacity to grasp global long-range relationships, prioritize essential data, and spatially filter irrelevant information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卤化氢完成签到 ,获得积分10
1秒前
甜甜无极完成签到,获得积分20
2秒前
Yangon完成签到,获得积分10
3秒前
缓慢雅青完成签到,获得积分10
3秒前
自然白安发布了新的文献求助10
4秒前
人生如茶完成签到,获得积分20
4秒前
酷波er应助愉快的乾采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
月Y完成签到 ,获得积分10
9秒前
赘婿应助清脆问柳采纳,获得10
10秒前
IvyLee关注了科研通微信公众号
10秒前
11秒前
12秒前
13秒前
马腾龙完成签到 ,获得积分10
13秒前
李健应助寒衣采纳,获得10
14秒前
张同学完成签到,获得积分10
14秒前
orixero应助民网采纳,获得10
14秒前
愉快的乾完成签到,获得积分10
15秒前
Ollie发布了新的文献求助10
16秒前
铭灵灵完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
xiaofeng完成签到,获得积分10
18秒前
zuolan完成签到,获得积分10
18秒前
拉长的奇迹给拉长的奇迹的求助进行了留言
18秒前
23秒前
myy完成签到 ,获得积分10
24秒前
25秒前
27秒前
圆圆圆关注了科研通微信公众号
27秒前
科研通AI6应助tao采纳,获得10
27秒前
Beyond095完成签到,获得积分10
28秒前
ADDDGDD发布了新的文献求助10
28秒前
29秒前
666发布了新的文献求助10
30秒前
Witness发布了新的文献求助10
32秒前
元始天尊完成签到 ,获得积分10
32秒前
贪玩心情完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124411
求助须知:如何正确求助?哪些是违规求助? 4328701
关于积分的说明 13488077
捐赠科研通 4163059
什么是DOI,文献DOI怎么找? 2282128
邀请新用户注册赠送积分活动 1283318
关于科研通互助平台的介绍 1222593