Self-attention and long-range relationship capture network for underwater object detection

水下 对象(语法) 航程(航空) 计算机科学 人工智能 环境科学 心理学 地质学 工程类 海洋学 航空航天工程
作者
Ziran Gao,Yanli Shi,Sha Li
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (2): 101971-101971 被引量:2
标识
DOI:10.1016/j.jksuci.2024.101971
摘要

Underwater object detection has been shown to exhibit significant potential for exploring underwater environments. However, underwater datasets often suffer from degeneration due to uneven underwater light distribution, complex underwater environment, and crowded underwater dynamic background. Thus, object detection performance would be degraded accordingly. In this paper, a large kernel convolutional object detection network based on self-attention and long-range relationship capture is proposed. Firstly, a hybrid dilated large kernel attention mechanism is proposed, which adopts the idea of hybrid dilated convolution and combines the advantages of large kernel attention mechanism and self-attention. This attention mechanism can avoid self-attention defects while achieving self-attention adaptiveness and long-range relevance. Secondly, a feature enhancement block called residual reconstructed module is proposed, which captures long-range dependencies in the network and extracts more critical contextual information, thus solving the problem of network degradation and accuracy degradation. Thirdly, an adaptive spatial feature fusion object detection head is constructed, which can directly learn how to filter different features at different feature layers spatially; useless information is filtered out, and only useful information is kept for combination to enhance the detection capability of the network further. Finally, network for underwater object detection is proposed based on the above three techniques. Extensive experiments were conducted on the well-known datasets of RUOD, Aquarium, URPC, and MS COCO. Compared to the prior state-of-the-art methods, the experimental findings demonstrate that the proposed approach obtains the highest mAP of 88.7%, 86.5%, 98.9%, and 71.4%, respectively. This represents an improvement of 1.2, 1.5, 8.5, and 0.2 percentage, in that order. The proposed model shows the capacity to function by applying self-attention to local details, as well as the capacity to grasp global long-range relationships, prioritize essential data, and spatially filter irrelevant information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怀民完成签到 ,获得积分10
刚刚
小瓶子发布了新的文献求助10
刚刚
大模型应助第七个星球采纳,获得10
刚刚
刚刚
殷勤的帽子关注了科研通微信公众号
1秒前
小猪完成签到 ,获得积分10
1秒前
热情蓝发布了新的文献求助10
2秒前
TTOM发布了新的文献求助10
2秒前
2秒前
YCY完成签到,获得积分10
3秒前
4秒前
慕慕完成签到 ,获得积分10
5秒前
5秒前
ysh完成签到,获得积分10
6秒前
ztt发布了新的文献求助10
7秒前
超级无敌好吃完成签到,获得积分10
7秒前
wzc发布了新的文献求助10
7秒前
3129386658发布了新的文献求助10
7秒前
我吃柠檬发布了新的文献求助10
7秒前
Tancl1235完成签到,获得积分10
7秒前
粥粥发布了新的文献求助10
8秒前
9秒前
薛武发布了新的文献求助10
10秒前
岁岁菌完成签到,获得积分10
11秒前
松子发布了新的文献求助10
11秒前
12秒前
英俊的铭应助有梦想的人采纳,获得10
13秒前
13秒前
13秒前
15秒前
热情蓝完成签到,获得积分20
15秒前
Zayro完成签到,获得积分10
16秒前
科研通AI6应助羊羊羊采纳,获得10
16秒前
17秒前
Lucas应助cordon采纳,获得10
18秒前
18秒前
simdows完成签到,获得积分10
18秒前
19秒前
Ava应助TTOM采纳,获得10
19秒前
yiyi完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396