Self-attention and long-range relationship capture network for underwater object detection

水下 对象(语法) 航程(航空) 计算机科学 人工智能 环境科学 心理学 地质学 工程类 海洋学 航空航天工程
作者
Ziran Gao,Yanli Shi,Sha Li
出处
期刊:Journal of King Saud University - Computer and Information Sciences [Elsevier]
卷期号:36 (2): 101971-101971 被引量:2
标识
DOI:10.1016/j.jksuci.2024.101971
摘要

Underwater object detection has been shown to exhibit significant potential for exploring underwater environments. However, underwater datasets often suffer from degeneration due to uneven underwater light distribution, complex underwater environment, and crowded underwater dynamic background. Thus, object detection performance would be degraded accordingly. In this paper, a large kernel convolutional object detection network based on self-attention and long-range relationship capture is proposed. Firstly, a hybrid dilated large kernel attention mechanism is proposed, which adopts the idea of hybrid dilated convolution and combines the advantages of large kernel attention mechanism and self-attention. This attention mechanism can avoid self-attention defects while achieving self-attention adaptiveness and long-range relevance. Secondly, a feature enhancement block called residual reconstructed module is proposed, which captures long-range dependencies in the network and extracts more critical contextual information, thus solving the problem of network degradation and accuracy degradation. Thirdly, an adaptive spatial feature fusion object detection head is constructed, which can directly learn how to filter different features at different feature layers spatially; useless information is filtered out, and only useful information is kept for combination to enhance the detection capability of the network further. Finally, network for underwater object detection is proposed based on the above three techniques. Extensive experiments were conducted on the well-known datasets of RUOD, Aquarium, URPC, and MS COCO. Compared to the prior state-of-the-art methods, the experimental findings demonstrate that the proposed approach obtains the highest mAP of 88.7%, 86.5%, 98.9%, and 71.4%, respectively. This represents an improvement of 1.2, 1.5, 8.5, and 0.2 percentage, in that order. The proposed model shows the capacity to function by applying self-attention to local details, as well as the capacity to grasp global long-range relationships, prioritize essential data, and spatially filter irrelevant information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助花不语采纳,获得10
3秒前
小于要毕业完成签到 ,获得积分10
5秒前
xuxu完成签到 ,获得积分10
6秒前
航行天下完成签到 ,获得积分10
16秒前
饱满香彤完成签到 ,获得积分10
18秒前
朴艺晨完成签到 ,获得积分10
24秒前
dajiejie完成签到 ,获得积分10
26秒前
望向天空的鱼完成签到 ,获得积分10
27秒前
Fresh完成签到 ,获得积分10
27秒前
勤奋完成签到 ,获得积分10
27秒前
积极凌兰完成签到 ,获得积分10
37秒前
changfox完成签到,获得积分10
47秒前
哎呀哎呀呀完成签到,获得积分10
48秒前
49秒前
ChatGPT发布了新的文献求助10
49秒前
51秒前
54秒前
管夜白发布了新的文献求助10
56秒前
ChatGPT发布了新的文献求助10
56秒前
58秒前
marc107完成签到,获得积分10
1分钟前
求助人员发布了新的文献求助10
1分钟前
guajiguaji完成签到,获得积分10
1分钟前
管夜白完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
打打应助绝望的老实人采纳,获得10
1分钟前
怎么办完成签到 ,获得积分10
1分钟前
小白鼠完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
满意的伊完成签到,获得积分10
1分钟前
给我一篇文献吧完成签到 ,获得积分10
1分钟前
zj完成签到 ,获得积分10
1分钟前
呆橘完成签到 ,获得积分10
1分钟前
你好纠结伦完成签到,获得积分10
1分钟前
田甜甜完成签到 ,获得积分10
1分钟前
1分钟前
厚德载物完成签到 ,获得积分10
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
Dr.向发布了新的文献求助10
1分钟前
qvb完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689402
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463118