An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes

点云 分割 人工智能 过度拟合 计算机科学 棱锥(几何) 模式识别(心理学) 特征(语言学) 过程(计算) 点(几何) 人工神经网络 数学 几何学 语言学 哲学 操作系统
作者
Niannian Wang,Duo Ma,Xueming Du,Bin Li,Danyang Di,Gaozhao Pang,Yihang Duan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:143: 105480-105480 被引量:24
标识
DOI:10.1016/j.tust.2023.105480
摘要

With the development of deep learning (DL), sewer pipe inspection on two-dimensional (2D) images has achieved remarkable accuracy. However, extracting defect measurements from these 2D images is challenging due to the curved nature of pipes and the lack of depth information. Point clouds can restore the three-dimensional (3D) information of objects. To effectively identify defects in disordered and sparse point clouds, a 3D sewer pipe classification and segmentation method was proposed. In the encoder, the original point clouds are sampled and grouped and the local features in the clusters are extracted by two symmetric functions (1 × 1 convolution and the maximization function) to process the points with permutation invariance. In the decoder, the multi-scaling abstract features are upsampled using feature pyramid network (FPN) to predict the category of each point. Especially, the network structure and training strategy of the inspection method is optimized to improve the inspection accuracy. Furthermore, two data augmentation methods, namely random scaling and point jitter, are used to increase the data volume. An ablation experiment shows that the optimization of network structure can effectively improve the performance of the inspection model and the novel training strategies can stabilize the training process and prevent overfitting. Comparison among the state-of-the-art networks demonstrates that the proposed segmentation model attains the highest mIoU of 94.15 %, which is improved by 11.46 % with the optimization of network structure and training strategy. For the classification task, the F1 score and accuracy of the established model are 6.79 % and 5.46 % higher than PointNet++, respectively. These results signify the high-accuracy defect inspection capability of our proposed method on 3D point clouds of sewer pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
隐形曼青应助科研进化中采纳,获得10
2秒前
顶上之战发布了新的文献求助30
3秒前
千早爱音应助123采纳,获得10
5秒前
5秒前
chenmeimei2012完成签到 ,获得积分10
6秒前
6秒前
John发布了新的文献求助10
7秒前
8秒前
苟文锋发布了新的文献求助10
9秒前
10秒前
eating完成签到,获得积分10
11秒前
Windsea发布了新的文献求助10
12秒前
12秒前
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
清脆天空发布了新的文献求助10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
及禾应助科研通管家采纳,获得20
12秒前
12秒前
浮游应助科研通管家采纳,获得10
13秒前
fyattojsk应助科研通管家采纳,获得20
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得30
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
谦让疾完成签到,获得积分20
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452