已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes

点云 分割 人工智能 过度拟合 计算机科学 棱锥(几何) 模式识别(心理学) 特征(语言学) 过程(计算) 点(几何) 人工神经网络 数学 几何学 语言学 哲学 操作系统
作者
Niannian Wang,Duo Ma,Xueming Du,Bin Li,Danyang Di,Gaozhao Pang,Yihang Duan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:143: 105480-105480 被引量:24
标识
DOI:10.1016/j.tust.2023.105480
摘要

With the development of deep learning (DL), sewer pipe inspection on two-dimensional (2D) images has achieved remarkable accuracy. However, extracting defect measurements from these 2D images is challenging due to the curved nature of pipes and the lack of depth information. Point clouds can restore the three-dimensional (3D) information of objects. To effectively identify defects in disordered and sparse point clouds, a 3D sewer pipe classification and segmentation method was proposed. In the encoder, the original point clouds are sampled and grouped and the local features in the clusters are extracted by two symmetric functions (1 × 1 convolution and the maximization function) to process the points with permutation invariance. In the decoder, the multi-scaling abstract features are upsampled using feature pyramid network (FPN) to predict the category of each point. Especially, the network structure and training strategy of the inspection method is optimized to improve the inspection accuracy. Furthermore, two data augmentation methods, namely random scaling and point jitter, are used to increase the data volume. An ablation experiment shows that the optimization of network structure can effectively improve the performance of the inspection model and the novel training strategies can stabilize the training process and prevent overfitting. Comparison among the state-of-the-art networks demonstrates that the proposed segmentation model attains the highest mIoU of 94.15 %, which is improved by 11.46 % with the optimization of network structure and training strategy. For the classification task, the F1 score and accuracy of the established model are 6.79 % and 5.46 % higher than PointNet++, respectively. These results signify the high-accuracy defect inspection capability of our proposed method on 3D point clouds of sewer pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
66小鼠发布了新的文献求助10
5秒前
5秒前
1234发布了新的文献求助10
6秒前
6秒前
还不回家发布了新的文献求助10
8秒前
诺颜爱完成签到,获得积分10
8秒前
无花果应助老实天菱采纳,获得10
10秒前
13秒前
14秒前
15秒前
wanci应助紧张的怜寒采纳,获得10
18秒前
西瓜发布了新的文献求助10
18秒前
lor完成签到,获得积分10
19秒前
惊鸿完成签到 ,获得积分10
20秒前
Naturewoman完成签到,获得积分10
23秒前
26秒前
88888完成签到,获得积分10
29秒前
朝朝暮夕发布了新的文献求助10
30秒前
ding应助无题采纳,获得10
30秒前
anle完成签到 ,获得积分10
34秒前
null应助时间尘埃采纳,获得10
36秒前
科研通AI6应助88888采纳,获得10
42秒前
Akim应助热心市民小红花采纳,获得30
44秒前
47秒前
酷波er应助西米采纳,获得10
49秒前
51秒前
52秒前
52秒前
52秒前
57秒前
乔木自燃完成签到 ,获得积分10
57秒前
57秒前
59秒前
XT发布了新的文献求助10
1分钟前
阿白发布了新的文献求助10
1分钟前
zzz完成签到 ,获得积分10
1分钟前
大模型应助Sylvia采纳,获得10
1分钟前
知行者完成签到 ,获得积分10
1分钟前
西米发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027