An automatic defect classification and segmentation method on three-dimensional point clouds for sewer pipes

点云 分割 人工智能 过度拟合 计算机科学 棱锥(几何) 模式识别(心理学) 特征(语言学) 过程(计算) 点(几何) 人工神经网络 数学 几何学 语言学 哲学 操作系统
作者
Niannian Wang,Duo Ma,Xueming Du,Bin Li,Danyang Di,Gaozhao Pang,Yihang Duan
出处
期刊:Tunnelling and Underground Space Technology [Elsevier BV]
卷期号:143: 105480-105480 被引量:24
标识
DOI:10.1016/j.tust.2023.105480
摘要

With the development of deep learning (DL), sewer pipe inspection on two-dimensional (2D) images has achieved remarkable accuracy. However, extracting defect measurements from these 2D images is challenging due to the curved nature of pipes and the lack of depth information. Point clouds can restore the three-dimensional (3D) information of objects. To effectively identify defects in disordered and sparse point clouds, a 3D sewer pipe classification and segmentation method was proposed. In the encoder, the original point clouds are sampled and grouped and the local features in the clusters are extracted by two symmetric functions (1 × 1 convolution and the maximization function) to process the points with permutation invariance. In the decoder, the multi-scaling abstract features are upsampled using feature pyramid network (FPN) to predict the category of each point. Especially, the network structure and training strategy of the inspection method is optimized to improve the inspection accuracy. Furthermore, two data augmentation methods, namely random scaling and point jitter, are used to increase the data volume. An ablation experiment shows that the optimization of network structure can effectively improve the performance of the inspection model and the novel training strategies can stabilize the training process and prevent overfitting. Comparison among the state-of-the-art networks demonstrates that the proposed segmentation model attains the highest mIoU of 94.15 %, which is improved by 11.46 % with the optimization of network structure and training strategy. For the classification task, the F1 score and accuracy of the established model are 6.79 % and 5.46 % higher than PointNet++, respectively. These results signify the high-accuracy defect inspection capability of our proposed method on 3D point clouds of sewer pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
零琳发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
伏波发布了新的文献求助100
4秒前
华仔应助苏11采纳,获得10
5秒前
6秒前
Hobobi完成签到,获得积分10
6秒前
YYL发布了新的文献求助10
6秒前
大模型应助李庆林采纳,获得10
6秒前
hhhhhhh发布了新的文献求助10
6秒前
Sun1c7发布了新的文献求助10
6秒前
bkagyin应助林知鲸落采纳,获得10
8秒前
Dear77完成签到,获得积分10
9秒前
9秒前
10秒前
homeland完成签到,获得积分20
11秒前
13秒前
14秒前
科研通AI6应助hhhhhhh采纳,获得10
15秒前
光亮的橘子完成签到,获得积分20
15秒前
16秒前
一叶知秋应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
文艺紫菜应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
FYH完成签到,获得积分20
17秒前
科研通AI5应助科研通管家采纳,获得150
18秒前
homeland发布了新的文献求助10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
文艺紫菜应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得30
18秒前
李健应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
科研通AI6应助东北三省采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134322
求助须知:如何正确求助?哪些是违规求助? 4335087
关于积分的说明 13505951
捐赠科研通 4172482
什么是DOI,文献DOI怎么找? 2287697
邀请新用户注册赠送积分活动 1288658
关于科研通互助平台的介绍 1229444