比索
光谱图
计算机科学
卷积(计算机科学)
语音识别
特征(语言学)
语音增强
降噪
还原(数学)
噪音(视频)
人工智能
编码器
重新使用
平均意见得分
深度学习
模式识别(心理学)
算法
人工神经网络
数学
工程类
公制(单位)
语言学
哲学
运营管理
几何学
废物管理
图像(数学)
操作系统
作者
Sheng Wei,Songyan Liu,Panwang Liu
标识
DOI:10.1109/jcice59059.2023.00039
摘要
To extract more useful feature information from the noisy speech spectrogram, this paper proposes a Deep Complex Densely Connected Convolutional Recurrent Network based on Coordinated Attention Mechanism (CA-DCDCCRN) speech reduction algorithm. The CA-DCDCCRN model incorporates Dense Convolution (DC) and Complex Dense Convolution (CDC) on the basis of Deep Complex Convolution Recurrent Network (DCCRN) to improve the modeling ability of models using contextual information, and adding the Coordination Attention (CA) module to the encoder to improve the attention to noisy spectrogram features. The experimental results show that the algorithm ensures the deep supervision and feature reuse capability of the network and reduces the loss of speech detail information; compared with the speech noise reduction methods of SEGAN, WaveU-net and DCCRN, the average improvement of PESQ is 33.33%, 30.8% and 9.9%, and the average improvement of STOI is 20.63%, 19.10% and 4.35%, which provides a more effective method for speech processing in complex environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI