A hybrid deep learning model for Bitcoin price prediction: data decomposition and feature selection

特征选择 水准点(测量) 计算机科学 计量经济学 随机森林 大数据 骨料(复合) 选型 利润(经济学) 数字加密货币 人工智能 经济 机器学习 数据挖掘 微观经济学 材料科学 大地测量学 复合材料 地理 计算机安全
作者
Jikai Wang,Kai Feng,Gaoxiu Qiao
出处
期刊:Applied Economics [Taylor & Francis]
卷期号:: 1-16 被引量:3
标识
DOI:10.1080/00036846.2023.2276093
摘要

Bitcoin has received a great deal of attention as a highly volatile asset with investors attempting to profit from its dramatic price fluctuations. We develop a hybrid deep learning model based on feature selection in different frequency domains to enrich the literature of Bitcoin price prediction. Indicators such as Technology, Economy, Green Finance and Media Attention are considered. We first decompose all the data into different frequencies through CEEMDAN approach, and then the data at the same frequency are integrated into a Random Forest model to reduce the subset of potential predictors by measuring the importance of different factors. Finally, the selected factors are put into the LSTM/GRU to make the prediction of different components of Bitcoin prices at the same frequency, and aggregate together to obtain the predicted Bitcoin prices. The empirical results show that our proposed model outperforms the benchmark models, which is verified by MCS test. The proposed hybrid method obtains much higher return on investment in simulated trading than other benchmark models. Our study inspired the investors to accurately predict Bitcoin price and dig possible relationships between different assets and its determinants in frequency domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhbk完成签到 ,获得积分10
刚刚
猪猪hero应助是述不是沭采纳,获得10
刚刚
zhaoxiao完成签到 ,获得积分10
刚刚
mary发布了新的文献求助10
1秒前
梓墨完成签到,获得积分10
1秒前
1秒前
3秒前
Orange应助Dr_zhangkai采纳,获得30
4秒前
zhaoxiao发布了新的文献求助10
5秒前
Jason完成签到,获得积分10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得30
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
LaTeXer应助科研通管家采纳,获得50
7秒前
风清扬应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
SciGPT应助皮崇知采纳,获得10
9秒前
在逃跑的康熙大帝在大笑完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
13秒前
张两丰发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
16秒前
xiaofeixia完成签到 ,获得积分10
16秒前
sbw完成签到,获得积分10
16秒前
研友_VZG7GZ应助卿卿采纳,获得10
17秒前
17秒前
wuzihao完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019