An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images

计算机科学 人工智能 乳腺癌 深度学习 残余物 Boosting(机器学习) 模式识别(心理学) 乳腺超声检查 异常 分类器(UML) 乳腺摄影术 机器学习 癌症 算法 医学 精神科 内科学
作者
Adyasha Sahu,Pradeep Kumar Das,Sukadev Meher
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105377-105377 被引量:132
标识
DOI:10.1016/j.bspc.2023.105377
摘要

Breast cancer is the second major reason of death among women around the world. Early and accurate breast cancer detection is important for proper treatment planning to save a life. In this paper, a deep learning-based ensemble classifier is proposed for the detection of breast cancer. The primary contributions are: (1) an efficient deep learning-based breast cancer detection method that can exhibit admirable performance with a small dataset; (2) the integration of three efficient transfer learning models (AlexNet, ResNet, and MobileNetV2), which lead to more accurate results; (3) the use of residual learning, depthwise separable convolution, and inverted residual bottleneck structure to make the system faster, as well as skip connection to make optimization easier and lastly, employing Laplacian of Gaussian (LoG) and modified high-boosting to improve performance. The experimental results convey that the suggested scheme gives superior classification performance by achieving an accuracy of 99.17% to detect abnormality and 97.75% to detect malignancy on the mini-DDSM dataset. Similarly, on the ultrasound dataset (BUSI), it provides accuracies of 96.92% and 94.62% to detect abnormality and malignancy, respectively. It also gives the best performance in another ultrasound dataset, BUS2, with 97.50% accuracy. Therefore, because of its versatility and reliability, the proposed model can be used for breast cancer detection in multimodal datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让南烟发布了新的文献求助10
刚刚
章鱼哥发布了新的文献求助10
刚刚
aslink完成签到,获得积分10
2秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
李健应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
5秒前
dudu应助科研通管家采纳,获得10
5秒前
Ky_Mac应助科研通管家采纳,获得30
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
蒹葭苍苍应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
Ky_Mac应助科研通管家采纳,获得30
5秒前
orixero应助玻璃杯采纳,获得10
6秒前
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Wind应助科研通管家采纳,获得20
6秒前
wy.he应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
蒹葭苍苍应助科研通管家采纳,获得10
6秒前
Wind应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896