An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images

计算机科学 人工智能 乳腺癌 深度学习 残余物 Boosting(机器学习) 模式识别(心理学) 乳腺超声检查 异常 分类器(UML) 乳腺摄影术 机器学习 癌症 算法 医学 精神科 内科学
作者
Adyasha Sahu,Pradeep Kumar Das,Sukadev Meher
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105377-105377 被引量:132
标识
DOI:10.1016/j.bspc.2023.105377
摘要

Breast cancer is the second major reason of death among women around the world. Early and accurate breast cancer detection is important for proper treatment planning to save a life. In this paper, a deep learning-based ensemble classifier is proposed for the detection of breast cancer. The primary contributions are: (1) an efficient deep learning-based breast cancer detection method that can exhibit admirable performance with a small dataset; (2) the integration of three efficient transfer learning models (AlexNet, ResNet, and MobileNetV2), which lead to more accurate results; (3) the use of residual learning, depthwise separable convolution, and inverted residual bottleneck structure to make the system faster, as well as skip connection to make optimization easier and lastly, employing Laplacian of Gaussian (LoG) and modified high-boosting to improve performance. The experimental results convey that the suggested scheme gives superior classification performance by achieving an accuracy of 99.17% to detect abnormality and 97.75% to detect malignancy on the mini-DDSM dataset. Similarly, on the ultrasound dataset (BUSI), it provides accuracies of 96.92% and 94.62% to detect abnormality and malignancy, respectively. It also gives the best performance in another ultrasound dataset, BUS2, with 97.50% accuracy. Therefore, because of its versatility and reliability, the proposed model can be used for breast cancer detection in multimodal datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx发布了新的文献求助10
刚刚
刚刚
苗条一兰完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Jing发布了新的文献求助10
2秒前
2秒前
LJX发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
flyfish完成签到,获得积分10
3秒前
bckl888完成签到,获得积分10
3秒前
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ding应助Wanderer采纳,获得10
5秒前
锅包肉爱吃肉完成签到 ,获得积分10
5秒前
HollidayLee完成签到,获得积分10
6秒前
6秒前
默默发布了新的文献求助10
6秒前
zx完成签到,获得积分10
7秒前
王川完成签到,获得积分10
7秒前
bayes111完成签到,获得积分20
7秒前
深情安青应助霍师傅采纳,获得10
8秒前
西鱼发布了新的文献求助10
8秒前
8秒前
Owen应助羊丢丢啊丢丢采纳,获得10
8秒前
旺旺发布了新的文献求助10
9秒前
wangyaofeng发布了新的文献求助10
9秒前
高子懿发布了新的文献求助10
9秒前
Quinn发布了新的文献求助10
9秒前
9秒前
小鹿完成签到,获得积分10
10秒前
c0uVi1完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515