An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images

计算机科学 人工智能 乳腺癌 深度学习 残余物 Boosting(机器学习) 模式识别(心理学) 乳腺超声检查 异常 分类器(UML) 乳腺摄影术 机器学习 癌症 算法 医学 精神科 内科学
作者
Adyasha Sahu,Pradeep Kumar Das,Sukadev Meher
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105377-105377 被引量:70
标识
DOI:10.1016/j.bspc.2023.105377
摘要

Breast cancer is the second major reason of death among women around the world. Early and accurate breast cancer detection is important for proper treatment planning to save a life. In this paper, a deep learning-based ensemble classifier is proposed for the detection of breast cancer. The primary contributions are: (1) an efficient deep learning-based breast cancer detection method that can exhibit admirable performance with a small dataset; (2) the integration of three efficient transfer learning models (AlexNet, ResNet, and MobileNetV2), which lead to more accurate results; (3) the use of residual learning, depthwise separable convolution, and inverted residual bottleneck structure to make the system faster, as well as skip connection to make optimization easier and lastly, employing Laplacian of Gaussian (LoG) and modified high-boosting to improve performance. The experimental results convey that the suggested scheme gives superior classification performance by achieving an accuracy of 99.17% to detect abnormality and 97.75% to detect malignancy on the mini-DDSM dataset. Similarly, on the ultrasound dataset (BUSI), it provides accuracies of 96.92% and 94.62% to detect abnormality and malignancy, respectively. It also gives the best performance in another ultrasound dataset, BUS2, with 97.50% accuracy. Therefore, because of its versatility and reliability, the proposed model can be used for breast cancer detection in multimodal datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
岁月静好发布了新的文献求助10
3秒前
fanfan完成签到,获得积分10
3秒前
yiyimx完成签到,获得积分10
4秒前
ll发布了新的文献求助10
4秒前
吃零食吃不下饭完成签到,获得积分10
6秒前
fanfan发布了新的文献求助10
6秒前
景平发布了新的文献求助10
6秒前
6秒前
mmj完成签到 ,获得积分10
7秒前
yuan1226完成签到 ,获得积分10
9秒前
无花果应助乖猫要努力采纳,获得10
9秒前
10秒前
11秒前
11秒前
听天由命W完成签到,获得积分10
11秒前
乐观小之应助目眩采纳,获得20
13秒前
ele_yuki完成签到,获得积分10
13秒前
淡然的铭完成签到,获得积分10
13秒前
斯文败类应助hx采纳,获得10
14秒前
小小富应助yiyimx采纳,获得10
14秒前
15秒前
Yaya发布了新的文献求助10
15秒前
李华完成签到,获得积分10
15秒前
hhhh发布了新的文献求助10
15秒前
大橙子应助深情的幼南采纳,获得10
16秒前
水濑心源发布了新的文献求助10
16秒前
gdwang1973完成签到,获得积分10
17秒前
17秒前
悦耳娩完成签到,获得积分10
19秒前
英俊的铭应助hhhh采纳,获得10
20秒前
21秒前
Castiron完成签到,获得积分10
22秒前
小董不懂发布了新的文献求助30
22秒前
Danielle完成签到,获得积分10
24秒前
25秒前
小蘑菇应助小董不懂采纳,获得10
27秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388