Space-time adaptive model order reduction utilizing local low-dimensionality of flow field

模型降阶 流量(数学) 雷诺数 还原(数学) 赫尔肖流 数学 大涡模拟 块(置换群论) 数学优化 计算机科学 明渠流量 算法 湍流 机械 几何学 物理 投影(关系代数)
作者
Takashi Misaka
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:493: 112475-112475
标识
DOI:10.1016/j.jcp.2023.112475
摘要

The cost of unsteady flow simulations, such as large eddy simulations, has been increasing because of the large number of mesh cells and the use of high-order numerical schemes. In contrast, recent data-driven reduced-order models (ROMs) predict a flow field quickly; however, their application is often limited to relatively simple flow problems. In this study, we investigate space-time adaptive model order reduction for unsteady flow simulation, where full-order Navier-Stokes equations and a proper orthogonal decomposition (POD)-based reduced-order model are adaptively switched in a block-by-block manner on a multi-block Cartesian mesh. The full-order model (FOM) is switched to the ROM when POD modes effectively represent the unsteady flow field in each block. Owing to the local low-dimensionality of a flow field, the degree of freedom of fluid flow in each block can be smaller than that of the entire flow field; hence, the flow field is effectively represented by a small number of POD modes. First, the hybrid FOM/ROM approach is tested with a low-Reynolds-number flow around a circular cylinder, where the reduction in computational time and the accuracy of the simulated flow field are evaluated. We then consider a flow around a circular cylinder with a Reynolds number of 1000, where the flow field is reduced except for the highly unsteady wake. The potential computational advantage of this method is demonstrated by load balancing on a distributed memory computer. In addition, we utilize bred vector dimensions to quantify the degree of freedom of the flow field in each block, which is closely related to whether ROMs effectively reduce the flow field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meikoo发布了新的文献求助10
1秒前
1秒前
1秒前
云和发布了新的文献求助10
1秒前
hhhhhh完成签到,获得积分10
1秒前
bkagyin应助小绵羊采纳,获得30
2秒前
3秒前
orixero应助老实的艺文采纳,获得10
3秒前
Akim应助老实的艺文采纳,获得10
3秒前
3秒前
晴空发布了新的文献求助10
3秒前
4秒前
款款发布了新的文献求助10
4秒前
5秒前
酷波er应助阿宝采纳,获得10
5秒前
大陆发布了新的文献求助30
5秒前
6秒前
科研通AI2S应助wwba采纳,获得10
6秒前
建辰十五完成签到,获得积分10
7秒前
7秒前
8秒前
共享精神应助难过的雪碧采纳,获得30
8秒前
踏实晓筠完成签到,获得积分20
8秒前
XShu发布了新的文献求助10
9秒前
在水一方应助lilili采纳,获得10
9秒前
上官若男应助霸气的梦露采纳,获得10
10秒前
10秒前
hyacinth发布了新的文献求助10
10秒前
10秒前
冷静凌旋发布了新的文献求助10
10秒前
曾经的访风完成签到,获得积分20
11秒前
11秒前
12秒前
SYLH应助高高千筹采纳,获得10
12秒前
13秒前
齐桉完成签到 ,获得积分10
13秒前
云和完成签到,获得积分10
14秒前
14秒前
打打应助雪白依波采纳,获得10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445