亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

液压泵 特征提取 活塞(光学) 轴向柱塞泵 水力机械 计算机科学 Softmax函数 液压缸 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 工程类 地质学 机械工程 深度学习 哲学 物理 地震学 波前 光学 语言学
作者
Yong Zhu,Hong Su,Shengnan Tang,Shida Zhang,Tao Zhou,Jie Wang
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:11 (3): 594-594 被引量:17
标识
DOI:10.3390/jmse11030594
摘要

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time–frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
cc应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得30
9秒前
cc应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得30
9秒前
计划完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
无心的婴发布了新的文献求助10
12秒前
聪慧的从雪完成签到 ,获得积分10
15秒前
orixero应助整齐海秋采纳,获得10
16秒前
25秒前
整齐海秋发布了新的文献求助10
30秒前
无心的婴完成签到,获得积分20
38秒前
49秒前
9464完成签到 ,获得积分10
49秒前
半城微凉完成签到,获得积分10
51秒前
52秒前
典雅的纸飞机完成签到 ,获得积分10
57秒前
59秒前
xx发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
归尘发布了新的文献求助30
1分钟前
bellapp完成签到 ,获得积分10
2分钟前
yznfly应助归尘采纳,获得20
2分钟前
酷波er应助归尘采纳,获得10
2分钟前
华仔应助归尘采纳,获得100
2分钟前
CipherSage应助归尘采纳,获得10
2分钟前
yydragen应助归尘采纳,获得30
2分钟前
今后应助归尘采纳,获得10
2分钟前
李爱国应助归尘采纳,获得10
2分钟前
CodeCraft应助归尘采纳,获得10
2分钟前
禾安应助归尘采纳,获得20
2分钟前
完美世界应助归尘采纳,获得10
2分钟前
Lucas应助归尘采纳,获得30
2分钟前
汉堡包应助归尘采纳,获得10
2分钟前
NexusExplorer应助归尘采纳,获得10
2分钟前
英俊的铭应助归尘采纳,获得10
2分钟前
Rondab应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128558
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789617
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056