A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

液压泵 特征提取 活塞(光学) 轴向柱塞泵 水力机械 计算机科学 Softmax函数 液压缸 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 工程类 地质学 机械工程 深度学习 语言学 哲学 物理 光学 波前 地震学
作者
Yong Zhu,Hong Su,Shengnan Tang,Shida Zhang,Tao Zhou,Jie Wang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (3): 594-594 被引量:17
标识
DOI:10.3390/jmse11030594
摘要

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time–frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
li发布了新的文献求助10
1秒前
小青椒应助仗炮由纪采纳,获得30
1秒前
啦某某完成签到,获得积分10
4秒前
隐形凡梅发布了新的文献求助10
5秒前
5秒前
LF-Scie完成签到,获得积分20
7秒前
脑洞疼应助土大款采纳,获得10
8秒前
CT发布了新的文献求助10
9秒前
xzj完成签到 ,获得积分10
9秒前
烤冷面发布了新的文献求助10
9秒前
12秒前
jun2008x完成签到 ,获得积分10
12秒前
zhenghua完成签到,获得积分20
13秒前
方法法国衣服头发完成签到,获得积分10
15秒前
llll完成签到 ,获得积分10
16秒前
16秒前
17秒前
梓辰完成签到 ,获得积分10
17秒前
nakl完成签到,获得积分10
19秒前
CT完成签到,获得积分20
20秒前
呵呵应助XZC采纳,获得10
21秒前
22秒前
困屁鱼完成签到 ,获得积分10
23秒前
123完成签到,获得积分10
24秒前
MCRong应助白华苍松采纳,获得20
25秒前
经海亦发布了新的文献求助10
25秒前
orixero应助Chloe采纳,获得10
28秒前
L3完成签到,获得积分10
28秒前
29秒前
Soleil发布了新的文献求助10
30秒前
30秒前
Luelin完成签到 ,获得积分10
31秒前
隐形曼青应助bee采纳,获得10
32秒前
经海亦完成签到,获得积分10
32秒前
cao_bq发布了新的文献求助10
33秒前
34秒前
热心梦安完成签到 ,获得积分10
36秒前
36秒前
呆瓜完成签到,获得积分10
37秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925