A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

液压泵 特征提取 活塞(光学) 轴向柱塞泵 水力机械 计算机科学 Softmax函数 液压缸 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 工程类 地质学 机械工程 深度学习 语言学 哲学 物理 光学 波前 地震学
作者
Yong Zhu,Hong Su,Shengnan Tang,Shida Zhang,Tao Zhou,Jie Wang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (3): 594-594 被引量:17
标识
DOI:10.3390/jmse11030594
摘要

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time–frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
充电宝应助大西瓜采纳,获得10
刚刚
华仔应助微笑远锋采纳,获得10
刚刚
核桃应助yujiu采纳,获得30
2秒前
2秒前
科研通AI6应助悦耳青梦采纳,获得10
2秒前
炙热雅琴发布了新的文献求助10
3秒前
风笙发布了新的文献求助10
3秒前
所所应助liu66采纳,获得10
3秒前
JamesPei应助zyx采纳,获得10
5秒前
5秒前
三家分晋发布了新的文献求助10
6秒前
33发布了新的文献求助10
6秒前
小蘑菇应助zyyao采纳,获得10
7秒前
8899发布了新的文献求助10
7秒前
实验员完成签到,获得积分10
7秒前
Lucas应助炙热雅琴采纳,获得10
8秒前
rr完成签到,获得积分10
9秒前
小吴同学发布了新的文献求助10
9秒前
Liquid发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
酷炫迎波完成签到,获得积分10
13秒前
Lucas应助空勒采纳,获得30
13秒前
13秒前
14秒前
风笙完成签到,获得积分10
14秒前
14秒前
14秒前
宗剑发布了新的文献求助10
15秒前
15秒前
吴文婧完成签到,获得积分10
15秒前
CipherSage应助一一采纳,获得10
15秒前
三家分晋完成签到,获得积分20
16秒前
16秒前
DONG完成签到,获得积分10
17秒前
吃鱼完成签到 ,获得积分10
18秒前
走走发布了新的文献求助10
18秒前
张磊完成签到,获得积分10
19秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501343
求助须知:如何正确求助?哪些是违规求助? 4597644
关于积分的说明 14460294
捐赠科研通 4531192
什么是DOI,文献DOI怎么找? 2483173
邀请新用户注册赠送积分活动 1466737
关于科研通互助平台的介绍 1439386