亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

液压泵 特征提取 活塞(光学) 轴向柱塞泵 水力机械 计算机科学 Softmax函数 液压缸 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 工程类 地质学 机械工程 深度学习 语言学 哲学 物理 光学 波前 地震学
作者
Yong Zhu,Hong Su,Shengnan Tang,Shida Zhang,Tao Zhou,Jie Wang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (3): 594-594 被引量:17
标识
DOI:10.3390/jmse11030594
摘要

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time–frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
lin完成签到,获得积分10
3秒前
5秒前
10秒前
wwf完成签到,获得积分20
15秒前
17秒前
20秒前
Skymi发布了新的文献求助10
21秒前
21秒前
Jasper应助GDL采纳,获得10
21秒前
热情的c99发布了新的文献求助10
26秒前
26秒前
英姑应助cxin采纳,获得10
27秒前
pzz发布了新的文献求助10
31秒前
34秒前
37秒前
汉堡包应助自信寻真采纳,获得10
38秒前
46秒前
47秒前
lxd完成签到 ,获得积分10
48秒前
pzz完成签到,获得积分10
49秒前
Grinde发布了新的文献求助10
51秒前
大胆的碧菡完成签到,获得积分10
51秒前
薄荷源星球完成签到 ,获得积分10
51秒前
能干秋珊完成签到,获得积分10
54秒前
55秒前
msn00完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
边雨完成签到 ,获得积分10
1分钟前
自信寻真发布了新的文献求助10
1分钟前
霸气乐菱发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671