A Novel Fault Diagnosis Method Based on SWT and VGG-LSTM Model for Hydraulic Axial Piston Pump

液压泵 特征提取 活塞(光学) 轴向柱塞泵 水力机械 计算机科学 Softmax函数 液压缸 断层(地质) 特征(语言学) 模式识别(心理学) 人工智能 工程类 地质学 机械工程 深度学习 语言学 哲学 物理 光学 波前 地震学
作者
Yong Zhu,Hong Su,Shengnan Tang,Shida Zhang,Tao Zhou,Jie Wang
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:11 (3): 594-594 被引量:17
标识
DOI:10.3390/jmse11030594
摘要

Since the hydraulic axial piston pump is the engine that drives hydraulic transmission systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction capability of VGG11, as well as the feature memory capability of the long short-term memory (LSTM) model, a novel intelligent fault identification method is proposed in this paper. First, the status data are transformed into two dimensions in terms of time and frequency by using SWT. Second, the depth features of the time–frequency map are obtained and dimensionality reduction is carried out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the damage identification model for long-term memory capabilities. The Softmax layer is utilized for the intelligent evaluation of various damage patterns and health state. The proposed method is utilized to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper wear, loose slipper, and center spring failure, based on the externally observed vibration signals of a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s. The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5, AlexNet, VGG11, and other typical models. The proposed method is validated to be efficient and accurate for the intelligent identification of common defects of hydraulic axial piston pumps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翁沛山完成签到 ,获得积分10
刚刚
1秒前
myyy完成签到 ,获得积分10
2秒前
典雅凌蝶发布了新的文献求助10
3秒前
StandardR发布了新的文献求助30
5秒前
6秒前
8秒前
xxx发布了新的文献求助10
10秒前
maox1aoxin应助专注的凌青采纳,获得30
10秒前
陈半喆发布了新的文献求助10
11秒前
ning发布了新的文献求助10
12秒前
13秒前
15秒前
15秒前
16秒前
陈大侠发布了新的文献求助30
17秒前
脑洞疼应助星空_采纳,获得20
17秒前
烟花应助fufu采纳,获得10
17秒前
17秒前
17秒前
StandardR发布了新的文献求助10
18秒前
羊羊爱吃羊羊完成签到 ,获得积分10
19秒前
lulu完成签到,获得积分10
20秒前
21秒前
科研通AI2S应助Tristan采纳,获得10
21秒前
mm发布了新的文献求助10
21秒前
不想起昵称完成签到 ,获得积分10
22秒前
陈半喆完成签到,获得积分10
23秒前
24秒前
蓝田发布了新的文献求助10
24秒前
无花果应助灵巧书文采纳,获得10
25秒前
清爽太阳发布了新的文献求助10
26秒前
古月发布了新的文献求助30
29秒前
竹筏过海应助科研通管家采纳,获得30
30秒前
19应助科研通管家采纳,获得30
30秒前
竹筏过海应助科研通管家采纳,获得30
30秒前
李爱国应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
30秒前
竹筏过海应助科研通管家采纳,获得30
30秒前
丘比特应助科研通管家采纳,获得50
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329457
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594359
捐赠科研通 2637590
什么是DOI,文献DOI怎么找? 1443651
科研通“疑难数据库(出版商)”最低求助积分说明 668775
邀请新用户注册赠送积分活动 656220