Operando studies reveal active Cu nanograins for CO2 electroreduction

材料科学 纳米技术 化学
作者
Yao Yang,Sheena Louisia,Sunmoon Yu,Jianbo Jin,Inwhan Roh,Chubai Chen,Maria V. Fonseca Guzman,Julian Feijóo,Peng‐Cheng Chen,Hongsen Wang,Christopher J. Pollock,Xin Huang,Yu‐Tsun Shao,Cheng Wang,David A. Muller,Héctor D. Abruña,Peidong Yang
出处
期刊:Nature [Springer Nature]
卷期号:614 (7947): 262-269 被引量:332
标识
DOI:10.1038/s41586-022-05540-0
摘要

Carbon dioxide electroreduction facilitates the sustainable synthesis of fuels and chemicals1. Although Cu enables CO2-to-multicarbon product (C2+) conversion, the nature of the active sites under operating conditions remains elusive2. Importantly, identifying active sites of high-performance Cu nanocatalysts necessitates nanoscale, time-resolved operando techniques3–5. Here, we present a comprehensive investigation of the structural dynamics during the life cycle of Cu nanocatalysts. A 7 nm Cu nanoparticle ensemble evolves into metallic Cu nanograins during electrolysis before complete oxidation to single-crystal Cu2O nanocubes following post-electrolysis air exposure. Operando analytical and four-dimensional electrochemical liquid-cell scanning transmission electron microscopy shows the presence of metallic Cu nanograins under CO2 reduction conditions. Correlated high-energy-resolution time-resolved X-ray spectroscopy suggests that metallic Cu, rich in nanograin boundaries, supports undercoordinated active sites for C–C coupling. Quantitative structure–activity correlation shows that a higher fraction of metallic Cu nanograins leads to higher C2+ selectivity. A 7 nm Cu nanoparticle ensemble, with a unity fraction of active Cu nanograins, exhibits sixfold higher C2+ selectivity than the 18 nm counterpart with one-third of active Cu nanograins. The correlation of multimodal operando techniques serves as a powerful platform to advance our fundamental understanding of the complex structural evolution of nanocatalysts under electrochemical conditions. By investigation of structural dynamics during the life cycle of Cu nanocatalysts, correlation of multimodal operando techniques was found to serve as a powerful platform to advance understanding of their complex structural evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜发布了新的文献求助10
1秒前
Fjj完成签到,获得积分10
2秒前
TangQQ发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得20
4秒前
Hello应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
调研昵称发布了新的文献求助10
5秒前
斯文败类应助Fjj采纳,获得10
6秒前
李健的小迷弟应助wyy采纳,获得10
6秒前
xu发布了新的文献求助10
7秒前
TangQQ完成签到,获得积分20
8秒前
10秒前
xiaomin发布了新的文献求助10
12秒前
13秒前
NexusExplorer应助hh采纳,获得10
13秒前
14秒前
14秒前
ding应助小田睡不醒采纳,获得10
14秒前
wh雨完成签到,获得积分20
15秒前
buerger发布了新的文献求助10
15秒前
酷波er应助菜菜采纳,获得20
16秒前
ding应助俭朴羊青采纳,获得10
18秒前
jj发布了新的文献求助10
18秒前
Orange应助雨诺采纳,获得10
18秒前
18秒前
迷路桃子完成签到,获得积分10
18秒前
18秒前
yuan完成签到 ,获得积分10
19秒前
想人陪的远锋完成签到,获得积分20
19秒前
20秒前
迷路桃子发布了新的文献求助10
21秒前
22秒前
科研通AI2S应助hhh采纳,获得10
22秒前
CipherSage应助April采纳,获得10
23秒前
科研通AI2S应助xiaomin采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464