A tough soft–hard interface in the human knee joint driven by multiscale toughening mechanisms

材料科学 韧性 复合材料 刚度 极限抗拉强度 模数 纳米技术
作者
Wenyue Li,Xiaozhao Wang,Renwei Mao,Dong Li,Hongxu Meng,Ru Zhang,Jinghua Fang,Zhengzhong Kang,Boxuan Wu,W. F. Mader,Xudong Yao,Chang Xie,Rui Li,Jin Wang,Xiao Chen,Xihao Pan,Weiqiu Chen,Wangping Duan,Huajian Gao,Hongwei Ouyang
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (4)
标识
DOI:10.1073/pnas.2416085122
摘要

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root–bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan. Here, we investigated the multiscale graded mineralization structure and their strengthening mechanisms within the 30-micron soft–hard interface at the root–bone junction. This graded interface, featuring interdigitated structures and an exponential increase in modulus, undergoes a phase transition from amorphous calcium phosphate (ACP) to gradually matured hydroxyapatite (HAP) crystals, regulated by location-specific distributed biomolecules. In coordination with collagen fibril deformation and reorientation, the in situ tensile mechanical experiments and molecular dynamic simulations revealed that immature ACP particles debond from the collagenous matrix and translocate to dissipate energy, while the progressively matured HAP crystals with high stiffness pins propagating cracks, thereby enhancing both the toughness and fatigue resistance of the interface. To further validate our findings, we built biomimetic soft–hard interfaces with phase-transforming mineralization which exhibited boosted strength, toughness, and interface adhesion. This interface model is generalizable to other material joints and provides a blueprint for developing robust soft–hard composites across various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wd发布了新的文献求助10
刚刚
刚刚
凡凡完成签到 ,获得积分10
刚刚
研友_5Y9X75发布了新的文献求助10
刚刚
科研通AI2S应助TT采纳,获得10
刚刚
1秒前
2秒前
X1x1A0Q1发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
liu发布了新的文献求助10
5秒前
ceciiahanhan完成签到,获得积分10
5秒前
吴舟发布了新的文献求助20
5秒前
乐观荔枝发布了新的文献求助10
7秒前
内向的青荷完成签到,获得积分10
7秒前
科研通AI2S应助Ethanyoyo0917采纳,获得10
7秒前
安静如波发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
汪汪完成签到,获得积分10
9秒前
ceciiahanhan发布了新的文献求助10
10秒前
10秒前
小爱发布了新的文献求助10
10秒前
11秒前
森林木完成签到,获得积分10
11秒前
外向山晴关注了科研通微信公众号
12秒前
12秒前
小丽酱完成签到,获得积分10
13秒前
鳗鱼如松完成签到,获得积分10
13秒前
张华完成签到,获得积分10
13秒前
13秒前
源源不断发布了新的文献求助10
13秒前
Zgf完成签到,获得积分10
13秒前
我是老大应助夏日天空采纳,获得10
14秒前
14秒前
卓惜筠发布了新的文献求助10
14秒前
orixero应助lzw123456采纳,获得10
15秒前
情怀应助ZHMM采纳,获得10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390520
求助须知:如何正确求助?哪些是违规求助? 3002003
关于积分的说明 8801503
捐赠科研通 2688604
什么是DOI,文献DOI怎么找? 1472715
科研通“疑难数据库(出版商)”最低求助积分说明 681081
邀请新用户注册赠送积分活动 673803