Innovations in Otolaryngology Using LLM for Early Detection of Sleep-Disordered Breathing

睡眠呼吸障碍 耳鼻咽喉科 呼吸 睡眠(系统调用) 医学 睡眠和呼吸 听力学 计算机科学 内科学 麻醉 阻塞性睡眠呼吸暂停 外科 程序设计语言
作者
Jin Zhou,Xiaoqin Li,Qiujie Xia,Liang Yu
标识
DOI:10.1016/j.slast.2025.100278
摘要

Sleep Disordered Breathing (SDB), including conditions like Obstructive Sleep Apnea (OSA), represents a major health concern, characterized by irregular airflow during sleep due to airway obstruction. SDB can result in serious health problems. Implementation of early intervention is vital whenever patient outcomes are to be considered. This research aims to advance research on otolaryngology using Machine Learning (ML) models, and Large Language Models (LLM) for identification of SDB using Electronic Health Record (HER). The approach proposes a hybrid ML framework combining the Dynamic Seagull Search algorithm-driven Large Language model (DSS-LLM). The extensive clinical dataset is used to train the model. It includes patient demographics, medical history, sleep habits, comorbidities, and physical measurements. Data pre-processing involves handling missing values, applying NLP techniques, and normalization. Feature extraction is done using Principal Component Analysis (PCA) to reduce the dimensionality of the hyperparameters and finally for selecting the best set of predictors. The extracted features are then used to train the proposed DSS-LLM model, which incorporates the DSS algorithm to optimize the LLM classifier, improving classification accuracy and model robustness. Subsequently, the idea of LLM is introduced for its application on textual clinical records comprising physicians' reports and patients' symptoms. The findings from an experiment suggest that the proposed model enhances the classification accuracy achieved to 98.91 %, precision attained by 98.9 %, recall achieved to 98.92 % and F-1 score attained by 98.58 % as compared to the models developed earlier. This research provides a novel solution to the screening of OSA at the pre-clinical level which involves hybrid machine learning models integrated with LLMs. This proposed framework is expected to boost clinical judgment and thereby increase better ophthalmology outcomes for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速冬天完成签到,获得积分10
刚刚
刚刚
VISIN完成签到,获得积分10
刚刚
雒雨欣完成签到,获得积分20
刚刚
1秒前
FashionBoy应助高大电灯胆采纳,获得10
1秒前
白给zz完成签到,获得积分10
1秒前
2秒前
唧唧完成签到,获得积分20
2秒前
2秒前
Crystal完成签到,获得积分10
2秒前
2秒前
3秒前
小航完成签到,获得积分10
3秒前
3秒前
子非鱼完成签到 ,获得积分10
3秒前
kytwenxian完成签到,获得积分0
4秒前
微兔小妹完成签到 ,获得积分10
5秒前
aaa发布了新的文献求助20
5秒前
yangcj完成签到,获得积分10
5秒前
柠檬小贝发布了新的文献求助10
5秒前
lzs完成签到,获得积分10
5秒前
6秒前
迷路芝麻完成签到,获得积分10
6秒前
悲伤西米露完成签到,获得积分10
6秒前
7秒前
Can完成签到,获得积分10
7秒前
7秒前
7秒前
QDU发布了新的文献求助10
7秒前
ext完成签到,获得积分10
8秒前
8秒前
科目三应助美满的幻悲采纳,获得10
9秒前
852应助活泼盼夏采纳,获得10
9秒前
9秒前
英俊的铭应助小灰灰采纳,获得10
10秒前
戴继超完成签到,获得积分10
10秒前
10秒前
魏佳阁应助jiangshanshan采纳,获得10
11秒前
冷艳的白竹完成签到,获得积分10
11秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Measure Mean Linear Intercept 500
IZELTABART TAPATANSINE 500
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3721726
求助须知:如何正确求助?哪些是违规求助? 3267655
关于积分的说明 9950312
捐赠科研通 2981457
什么是DOI,文献DOI怎么找? 1635567
邀请新用户注册赠送积分活动 776461
科研通“疑难数据库(出版商)”最低求助积分说明 746310