亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural network based on control volumes for solving time-independent problems

物理 人工神经网络 统计物理学 应用数学 机器学习 数学 计算机科学
作者
Chang Wei,Y. Fan,Yongqing Zhou,Xin Liu,Chi Li,Xinying Li,Heyang Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (3)
标识
DOI:10.1063/5.0256470
摘要

Physics-informed neural networks (PINNs) have been employed as a new type of solver of partial differential equations (PDEs). However, PINNs suffer from two limitations that impede their further development. First, PINNs exhibit weak physical constraints that may result in unsatisfactory results for complex physical problems. Second, the differential operation using automatic differentiation (AD) in the loss function may contaminate backpropagated gradients hindering the convergence of neural networks. To address these issues and improve the ability of PINNs, this paper introduces a novel PINN, referred to as CV-PINN, based on control volumes with the collocation points as their geometric centers. In CV-PINN, the physical laws are incorporated in a reformulated loss function in the form of discretized algebraic equations derived by integrating the PDEs over the control volumes by means of the finite volume method (FVM). In this way, the physical constraints are transformed from a single local collocation point to a control volume. Furthermore, the use of algebraic discretized equations in the loss function eliminates the derivative terms and, thereby, avoids the differential operation using AD. To validate the performance of CV-PINN, several benchmark problems are solved. CV-PINN is first used to solve Poisson's equation and the Helmholtz equation in square and irregular domains, respectively. CV-PINN is then used to simulate the lid-driven cavity flow problem. The results demonstrate that CV-PINN can precisely predict the velocity distributions and the primary vortex. The numerical experiments demonstrate that enhanced physical constraints of CV-PINN improve its prediction performance in solving different PDEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
13秒前
17秒前
脑洞疼应助酷炫荷花采纳,获得10
19秒前
超级涔完成签到 ,获得积分10
42秒前
爆米花应助YW采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
随机子发布了新的文献求助10
50秒前
52秒前
springovo发布了新的文献求助10
57秒前
32完成签到 ,获得积分10
1分钟前
想吃芝士焗饭完成签到 ,获得积分10
1分钟前
wanci应助赵赵采纳,获得10
1分钟前
1分钟前
木木完成签到 ,获得积分10
1分钟前
酷炫荷花发布了新的文献求助10
1分钟前
1分钟前
可爱的函函应助springovo采纳,获得10
1分钟前
赵赵发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小鲸发布了新的文献求助10
1分钟前
noss发布了新的文献求助10
1分钟前
2分钟前
2分钟前
springovo发布了新的文献求助10
2分钟前
67完成签到 ,获得积分10
2分钟前
CipherSage应助酷炫荷花采纳,获得10
2分钟前
2分钟前
李健应助springovo采纳,获得10
2分钟前
yellow完成签到 ,获得积分10
2分钟前
TXZ06完成签到,获得积分10
2分钟前
山野完成签到 ,获得积分10
2分钟前
3分钟前
springovo发布了新的文献求助10
3分钟前
3分钟前
TonyLee完成签到,获得积分10
3分钟前
sangsang发布了新的文献求助10
3分钟前
铜锣湾新之助完成签到 ,获得积分10
3分钟前
科目三应助sangsang采纳,获得10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775938
求助须知:如何正确求助?哪些是违规求助? 3321516
关于积分的说明 10205998
捐赠科研通 3036592
什么是DOI,文献DOI怎么找? 1666364
邀请新用户注册赠送积分活动 797368
科研通“疑难数据库(出版商)”最低求助积分说明 757801