A thermal field FEM of titanium alloy coating on low-carbon steel by laser cladding with experimental validation

材料科学 涂层 微观结构 钛合金 有限元法 包层(金属加工) 激光器 碳钢 温度梯度 热的 复合材料 合金 冶金 光学 结构工程 热力学 腐蚀 物理 工程类 量子力学
作者
Sizhi Zuo‐Jiang,Hongying Yu,Xuzhou Jiang,Wei Gao,Dongbai Sun
出处
期刊:Surface & Coatings Technology [Elsevier]
卷期号:452: 129113-129113 被引量:20
标识
DOI:10.1016/j.surfcoat.2022.129113
摘要

Numerical simulation is an efficient method to study the laser cladding process via reconstructing the thermal field and analyzing the evolution of the microstructures. In this work, a novel 3D finite element model (FEM) of the laser cladding process is proposed for materials with significantly different thermo-physical properties, for example, a titanium alloy (TA1) coating on an iron (Q235) substrate. Multiple practical factors, like the coating geometry variation, powder preheating and laser energy attenuation, were considered in this model to ensure its high accuracy. For different laser scanning speeds, the transient temperature contours and their variations against time were simulated, and the calculation errors of the highest temperatures are <2 %. Based on the comparison of the binary phase (TiFe) diagram with the chemical composition of the coating, a new criterion, called the Tm criterion, was established for the coating solidification. Then, the solidification parameters of the moving solid-liquid interface, like the cooling rate, solidification rate and G/R (temperature gradient to solidification rate) ratio, were calculated to predict and analyze the solidification process and microstructure evolution of the coating. Finally, the simulation results were compared with the physical experiments, which proved the validity of the FEM and the rationality of the Tm criterion. Based on the numerical simulation and predicted microstructure evolution, this research provides an accurate, applicable and powerful analytical method for the laser cladding process with different materials, which can substantially improve the time and cost efficiencies of the process optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北北关注了科研通微信公众号
1秒前
小逗比完成签到,获得积分10
2秒前
乐乐应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
明理的绿蓉完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得20
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
雨归完成签到 ,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Nailuokk应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
闪闪涫应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
笨笨凡松发布了新的文献求助10
5秒前
快乐的小凡完成签到,获得积分10
6秒前
7秒前
9秒前
无极微光应助灿灿采纳,获得20
9秒前
英姑应助陈陈采纳,获得10
10秒前
12秒前
划分发布了新的文献求助20
12秒前
优秀笑柳发布了新的文献求助10
14秒前
可靠幻然完成签到 ,获得积分10
14秒前
14秒前
BK发布了新的文献求助10
15秒前
Ying发布了新的文献求助30
16秒前
梁真真完成签到 ,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759