A thermal field FEM of titanium alloy coating on low-carbon steel by laser cladding with experimental validation

材料科学 涂层 微观结构 钛合金 有限元法 包层(金属加工) 激光器 碳钢 温度梯度 热的 复合材料 合金 冶金 光学 结构工程 热力学 腐蚀 物理 工程类 量子力学
作者
Sizhi Zuo‐Jiang,Hongying Yu,Xuzhou Jiang,Wei Gao,Dongbai Sun
出处
期刊:Surface & Coatings Technology [Elsevier]
卷期号:452: 129113-129113 被引量:20
标识
DOI:10.1016/j.surfcoat.2022.129113
摘要

Numerical simulation is an efficient method to study the laser cladding process via reconstructing the thermal field and analyzing the evolution of the microstructures. In this work, a novel 3D finite element model (FEM) of the laser cladding process is proposed for materials with significantly different thermo-physical properties, for example, a titanium alloy (TA1) coating on an iron (Q235) substrate. Multiple practical factors, like the coating geometry variation, powder preheating and laser energy attenuation, were considered in this model to ensure its high accuracy. For different laser scanning speeds, the transient temperature contours and their variations against time were simulated, and the calculation errors of the highest temperatures are <2 %. Based on the comparison of the binary phase (TiFe) diagram with the chemical composition of the coating, a new criterion, called the Tm criterion, was established for the coating solidification. Then, the solidification parameters of the moving solid-liquid interface, like the cooling rate, solidification rate and G/R (temperature gradient to solidification rate) ratio, were calculated to predict and analyze the solidification process and microstructure evolution of the coating. Finally, the simulation results were compared with the physical experiments, which proved the validity of the FEM and the rationality of the Tm criterion. Based on the numerical simulation and predicted microstructure evolution, this research provides an accurate, applicable and powerful analytical method for the laser cladding process with different materials, which can substantially improve the time and cost efficiencies of the process optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助淼淼采纳,获得10
1秒前
1秒前
大个应助时尚的咖啡采纳,获得10
2秒前
归尘应助傲娇的昊焱采纳,获得10
2秒前
Re完成签到,获得积分10
2秒前
de铭完成签到,获得积分10
3秒前
害怕的路灯完成签到,获得积分10
9秒前
yinhuan完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
官官过完成签到 ,获得积分10
13秒前
森源海发布了新的文献求助10
13秒前
常常完成签到 ,获得积分10
14秒前
14秒前
16秒前
FashionBoy应助黄臻采纳,获得10
16秒前
懦弱的咖啡豆完成签到,获得积分10
16秒前
16秒前
17秒前
linger完成签到 ,获得积分10
18秒前
Ma完成签到,获得积分10
18秒前
活力南露完成签到,获得积分10
20秒前
小仙完成签到,获得积分10
20秒前
20秒前
不信人间有白头完成签到 ,获得积分10
20秒前
wsy完成签到,获得积分10
21秒前
Hyp完成签到 ,获得积分10
21秒前
支雨泽发布了新的文献求助10
22秒前
Tianling完成签到,获得积分0
23秒前
23秒前
优美紫槐应助qqqq_8采纳,获得10
23秒前
wsy发布了新的文献求助30
24秒前
纳米酶催化完成签到,获得积分10
24秒前
WuYixiao1012完成签到,获得积分10
24秒前
1111完成签到,获得积分10
24秒前
中二少女爱喝可乐完成签到,获得积分10
25秒前
dzy1317完成签到,获得积分10
26秒前
一玮完成签到 ,获得积分10
26秒前
快乐完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688566
关于积分的说明 14854693
捐赠科研通 4693840
什么是DOI,文献DOI怎么找? 2540863
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806