A thermal field FEM of titanium alloy coating on low-carbon steel by laser cladding with experimental validation

材料科学 涂层 微观结构 钛合金 有限元法 包层(金属加工) 激光器 碳钢 温度梯度 热的 复合材料 合金 冶金 光学 结构工程 热力学 腐蚀 物理 工程类 量子力学
作者
Sizhi Zuo‐Jiang,Hongying Yu,Xuzhou Jiang,Wei Gao,Dongbai Sun
出处
期刊:Surface & Coatings Technology [Elsevier]
卷期号:452: 129113-129113 被引量:20
标识
DOI:10.1016/j.surfcoat.2022.129113
摘要

Numerical simulation is an efficient method to study the laser cladding process via reconstructing the thermal field and analyzing the evolution of the microstructures. In this work, a novel 3D finite element model (FEM) of the laser cladding process is proposed for materials with significantly different thermo-physical properties, for example, a titanium alloy (TA1) coating on an iron (Q235) substrate. Multiple practical factors, like the coating geometry variation, powder preheating and laser energy attenuation, were considered in this model to ensure its high accuracy. For different laser scanning speeds, the transient temperature contours and their variations against time were simulated, and the calculation errors of the highest temperatures are <2 %. Based on the comparison of the binary phase (TiFe) diagram with the chemical composition of the coating, a new criterion, called the Tm criterion, was established for the coating solidification. Then, the solidification parameters of the moving solid-liquid interface, like the cooling rate, solidification rate and G/R (temperature gradient to solidification rate) ratio, were calculated to predict and analyze the solidification process and microstructure evolution of the coating. Finally, the simulation results were compared with the physical experiments, which proved the validity of the FEM and the rationality of the Tm criterion. Based on the numerical simulation and predicted microstructure evolution, this research provides an accurate, applicable and powerful analytical method for the laser cladding process with different materials, which can substantially improve the time and cost efficiencies of the process optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助MJ采纳,获得10
1秒前
dang发布了新的文献求助10
1秒前
buno应助鱼儿会飞采纳,获得10
2秒前
Le完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
希望天下0贩的0应助cindy采纳,获得10
4秒前
好运6连发布了新的文献求助10
4秒前
5秒前
yy完成签到,获得积分10
5秒前
魏芷容完成签到,获得积分10
5秒前
徐徐图之完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
夏简柒完成签到,获得积分10
7秒前
AAA电池批发顾总完成签到,获得积分10
7秒前
7秒前
晚梦尚歌发布了新的文献求助10
8秒前
棱镜发布了新的文献求助10
8秒前
dzdlznb发布了新的文献求助10
9秒前
科研通AI6应助伍六柒采纳,获得10
9秒前
111完成签到,获得积分20
10秒前
10秒前
纯真玉兰发布了新的文献求助10
11秒前
11秒前
11秒前
楠木木完成签到 ,获得积分10
11秒前
hhhhh完成签到 ,获得积分10
12秒前
阡陌发布了新的文献求助10
12秒前
瘦瘦麦片发布了新的文献求助10
13秒前
lv完成签到,获得积分10
14秒前
15秒前
16秒前
奋斗VS发布了新的文献求助10
16秒前
共享精神应助winwing采纳,获得10
17秒前
吴彦祖完成签到,获得积分10
19秒前
20秒前
zhangyu完成签到,获得积分10
20秒前
今后应助月星采纳,获得100
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795