亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancement of PIV measurements via physics-informed neural networks

粒子图像测速 湍流 边界层 翼型 逆压力梯度 机械 雷诺平均Navier-Stokes方程 流量(数学) 流动分离 合成射流 物理 雷诺数 压力梯度 计算机科学 人工智能 执行机构
作者
Gazi Hasanuzzaman,Hamidreza Eivazi,Sebastian Merbold,Christoph Egbers,Ricardo Vinuesa
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (4): 044002-044002 被引量:24
标识
DOI:10.1088/1361-6501/aca9eb
摘要

Abstract Physics-informed neural networks (PINN) are machine-learning methods that have been proved to be very successful and effective for solving governing equations of fluid flow. In this work we develop a robust and efficient model within this framework and apply it to a series of two-dimensional three-component stereo particle-image velocimetry (PIV) datasets, to reconstruct the mean velocity field and correct measurements errors in the data. Within this framework, the PINNs-based model solves the Reynolds-averaged-Navier–Stokes equations for zero-pressure-gradient turbulent boundary layer (ZPGTBL) without a prior assumption and only taking the data at the PIV domain boundaries. The turbulent boundary layer (TBL) data has different flow conditions upstream of the measurement location due to the effect of an applied flow control via uniform blowing. The developed PINN model is very robust, adaptable and independent of the upstream flow conditions due to different rates of wall-normal blowing while predicting the mean velocity quantities simultaneously. Hence, this approach enables improving the mean-flow quantities by reducing errors in the PIV data. For comparison, a similar analysis has been applied to numerical data obtained from a spatially-developing ZPGTBL and an adverse-pressure-gradient TBL over a NACA4412 airfoil geometry. The PINNs-predicted results have less than 1% error in the streamwise velocity and are in excellent agreement with the reference data. This shows that PINNs has potential applicability to shear-driven turbulent flows with different flow histories, which includes experiments and numerical simulations for predicting high-fidelity data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到 ,获得积分10
17秒前
54秒前
共享精神应助Marciu33采纳,获得10
59秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
葛力发布了新的文献求助10
1分钟前
Zarc完成签到,获得积分10
1分钟前
1分钟前
2分钟前
发财小鱼完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助农夫采纳,获得10
2分钟前
葛力发布了新的文献求助10
2分钟前
开心寄松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
SciGPT应助余甘木采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
圆圆完成签到 ,获得积分10
3分钟前
美罗培南完成签到,获得积分10
3分钟前
烨枫晨曦完成签到,获得积分10
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
xy完成签到 ,获得积分10
3分钟前
葛力发布了新的文献求助10
3分钟前
3分钟前
活力的驳发布了新的文献求助10
3分钟前
传奇3应助活力的驳采纳,获得30
3分钟前
无花果应助暮光的加纳采纳,获得10
3分钟前
好烦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
余甘木发布了新的文献求助10
4分钟前
舒服的吗喽完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128617
捐赠科研通 3238269
什么是DOI,文献DOI怎么找? 1789671
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069