A Robust Segmentation of Retinal Fluids from OCT images using MCFAR-Net

人工智能 计算机科学 分割 计算机视觉 视网膜 模式识别(心理学) 眼科 医学
作者
P Geetha Pavani,Bharat B. Biswal,Srinivasa Rao Kandula,P K Biswal,G. Siddartha,T. Niranjan,B. V. Subrahmanyam
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:: 128059-128059
标识
DOI:10.1016/j.neucom.2024.128059
摘要

This paper presents a novel architecture to detect Macular Edema (ME) in Optical Coherence Tomography (OCT) images that occurs due to high fluid accumulation between the retinal layers of the eye. These excessive fluids have swollen the macular region and may result in visual impairments. To alleviate this problem in its early stage, the proposed model, Multiscale Context Enhancive Aggregation & Refinement Network (MCFAR-Net) is implemented to detect these fluids enabling the prevention of visual loss. This MCFAR-Net is incorporated with two Context Feature Enhancive Modules (CFEM). The upper module is initially trained using contrastive loss for extracting the most pertinent multiscale feature maps allowing to segment thick fluid regions from OCT images. Further, the lower module elevates the feature maps to segment the minute fluid regions using the outputs of upper CFEM along with input image. Finally, the output fluid probabilistic feature maps of both paths of the two modules are stacked together and fed as input to Feature Synthesizer (FS) Module. This module improves the true positive rate of the proposed algorithm and segments the fluid region more accurately. The performance of the proposed model is trained and evaluated using publicly available datasets like RETOUCH, OPTIMA, and DUKE datasets. This model outperformed existing state-of the-art algorithms by attaining an average dice coefficient of 95.63% when tested on the RETOUCH dataset. The performance of proposed MCFAR-Net reduced the misclassification errors enabling to identify ME more precisely in its early stage allowing the expert doctor to provide immediate treatment to the patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fcyyc发布了新的文献求助10
刚刚
1秒前
俭朴的芝麻完成签到,获得积分10
1秒前
1秒前
传奇3应助显隐采纳,获得10
1秒前
Saluzi发布了新的文献求助10
1秒前
ELend完成签到,获得积分10
1秒前
研友_VZG7GZ应助木木采纳,获得10
1秒前
皮蛋瘦肉周完成签到,获得积分10
2秒前
3秒前
小华完成签到,获得积分10
4秒前
科研通AI2S应助鱼鱼采纳,获得10
4秒前
PH彭发布了新的文献求助10
4秒前
充电宝应助程爽采纳,获得10
5秒前
5秒前
5秒前
Issac01发布了新的文献求助10
6秒前
白茶完成签到,获得积分10
6秒前
7秒前
Zzy完成签到,获得积分10
7秒前
7秒前
顾矜应助周小鱼采纳,获得10
7秒前
SYLH应助勤劳的斑马采纳,获得30
7秒前
Y哦莫哦莫完成签到,获得积分10
7秒前
7秒前
林狗完成签到 ,获得积分10
8秒前
8秒前
清爽语柳完成签到,获得积分10
8秒前
9秒前
qqq发布了新的文献求助10
9秒前
9秒前
咖啡豆完成签到,获得积分10
10秒前
lll完成签到,获得积分10
10秒前
科目三应助Lizzy采纳,获得10
11秒前
12秒前
livian完成签到,获得积分20
12秒前
时尚的萝完成签到 ,获得积分10
12秒前
zhou发布了新的文献求助10
12秒前
凯云发布了新的文献求助30
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406