A Robust Segmentation of Retinal Fluids from OCT images using MCFAR-Net

人工智能 计算机科学 分割 计算机视觉 视网膜 模式识别(心理学) 眼科 医学
作者
P Geetha Pavani,Bharat B. Biswal,Srinivasa Rao Kandula,P K Biswal,G. Siddartha,T. Niranjan,B. V. Subrahmanyam
出处
期刊:Neurocomputing [Elsevier]
卷期号:: 128059-128059
标识
DOI:10.1016/j.neucom.2024.128059
摘要

This paper presents a novel architecture to detect Macular Edema (ME) in Optical Coherence Tomography (OCT) images that occurs due to high fluid accumulation between the retinal layers of the eye. These excessive fluids have swollen the macular region and may result in visual impairments. To alleviate this problem in its early stage, the proposed model, Multiscale Context Enhancive Aggregation & Refinement Network (MCFAR-Net) is implemented to detect these fluids enabling the prevention of visual loss. This MCFAR-Net is incorporated with two Context Feature Enhancive Modules (CFEM). The upper module is initially trained using contrastive loss for extracting the most pertinent multiscale feature maps allowing to segment thick fluid regions from OCT images. Further, the lower module elevates the feature maps to segment the minute fluid regions using the outputs of upper CFEM along with input image. Finally, the output fluid probabilistic feature maps of both paths of the two modules are stacked together and fed as input to Feature Synthesizer (FS) Module. This module improves the true positive rate of the proposed algorithm and segments the fluid region more accurately. The performance of the proposed model is trained and evaluated using publicly available datasets like RETOUCH, OPTIMA, and DUKE datasets. This model outperformed existing state-of the-art algorithms by attaining an average dice coefficient of 95.63% when tested on the RETOUCH dataset. The performance of proposed MCFAR-Net reduced the misclassification errors enabling to identify ME more precisely in its early stage allowing the expert doctor to provide immediate treatment to the patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助a.........采纳,获得10
刚刚
朴素黑猫发布了新的文献求助10
1秒前
易中华完成签到,获得积分10
1秒前
李冬卿完成签到,获得积分10
1秒前
2秒前
2秒前
Hello应助wan采纳,获得10
2秒前
瑾蘆完成签到 ,获得积分10
3秒前
大力帽子应助CHEN采纳,获得10
3秒前
qiii发布了新的文献求助10
3秒前
大个应助smz采纳,获得10
3秒前
sbf发布了新的文献求助10
4秒前
卓卓卓卓关注了科研通微信公众号
4秒前
芝士椰果发布了新的文献求助30
5秒前
wrlwrl完成签到,获得积分10
5秒前
Fermion发布了新的文献求助10
5秒前
hearz完成签到,获得积分10
6秒前
小马甲应助小糊涂采纳,获得10
6秒前
feng完成签到 ,获得积分10
6秒前
霍笑白完成签到,获得积分10
6秒前
衡珩蘅完成签到,获得积分20
7秒前
9秒前
FashionBoy应助sbf采纳,获得10
9秒前
完美世界应助evelyn采纳,获得10
9秒前
鱼鱼色发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
搜集达人应助HH采纳,获得10
10秒前
11秒前
搜集达人应助lmr采纳,获得10
11秒前
完美世界应助罗柠七采纳,获得20
12秒前
阿强完成签到,获得积分10
12秒前
衡珩蘅发布了新的文献求助30
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
嘞是举仔应助hanyuchao采纳,获得50
14秒前
up关闭了up文献求助
14秒前
结实黑猫发布了新的文献求助10
14秒前
cmu1h完成签到,获得积分10
14秒前
李凯发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233