A Robust Segmentation of Retinal Fluids from OCT images using MCFAR-Net

人工智能 计算机科学 分割 计算机视觉 视网膜 模式识别(心理学) 眼科 医学
作者
P Geetha Pavani,Bharat B. Biswal,Srinivasa Rao Kandula,P K Biswal,G. Siddartha,T. Niranjan,B. V. Subrahmanyam
出处
期刊:Neurocomputing [Elsevier]
卷期号:: 128059-128059
标识
DOI:10.1016/j.neucom.2024.128059
摘要

This paper presents a novel architecture to detect Macular Edema (ME) in Optical Coherence Tomography (OCT) images that occurs due to high fluid accumulation between the retinal layers of the eye. These excessive fluids have swollen the macular region and may result in visual impairments. To alleviate this problem in its early stage, the proposed model, Multiscale Context Enhancive Aggregation & Refinement Network (MCFAR-Net) is implemented to detect these fluids enabling the prevention of visual loss. This MCFAR-Net is incorporated with two Context Feature Enhancive Modules (CFEM). The upper module is initially trained using contrastive loss for extracting the most pertinent multiscale feature maps allowing to segment thick fluid regions from OCT images. Further, the lower module elevates the feature maps to segment the minute fluid regions using the outputs of upper CFEM along with input image. Finally, the output fluid probabilistic feature maps of both paths of the two modules are stacked together and fed as input to Feature Synthesizer (FS) Module. This module improves the true positive rate of the proposed algorithm and segments the fluid region more accurately. The performance of the proposed model is trained and evaluated using publicly available datasets like RETOUCH, OPTIMA, and DUKE datasets. This model outperformed existing state-of the-art algorithms by attaining an average dice coefficient of 95.63% when tested on the RETOUCH dataset. The performance of proposed MCFAR-Net reduced the misclassification errors enabling to identify ME more precisely in its early stage allowing the expert doctor to provide immediate treatment to the patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助yyan采纳,获得10
刚刚
笑点低的悒完成签到 ,获得积分10
刚刚
bjbmtxy完成签到,获得积分10
1秒前
小吃货发布了新的文献求助20
1秒前
Owen应助LiuZfosu采纳,获得10
1秒前
王中丽完成签到 ,获得积分10
1秒前
2秒前
无名完成签到,获得积分10
2秒前
G18960完成签到,获得积分10
3秒前
liu发布了新的文献求助10
3秒前
辞羽发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
大模型应助11111采纳,获得10
5秒前
梦游天吟留别完成签到,获得积分10
5秒前
yyan完成签到,获得积分10
6秒前
6秒前
活力小笼包完成签到,获得积分10
8秒前
cheese完成签到,获得积分10
8秒前
桐桐应助sweetsbt采纳,获得10
9秒前
南风知我意完成签到,获得积分10
9秒前
深情安青应助跳跃的大楚采纳,获得30
9秒前
Zoe完成签到,获得积分10
9秒前
Cheny完成签到 ,获得积分10
10秒前
10秒前
10秒前
核桃发布了新的文献求助10
11秒前
13秒前
Ava应助可靠的啤酒采纳,获得10
13秒前
panpanpanda完成签到 ,获得积分10
13秒前
SUNLE完成签到,获得积分10
14秒前
老秦完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
2025发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586202
求助须知:如何正确求助?哪些是违规求助? 4669536
关于积分的说明 14778743
捐赠科研通 4619127
什么是DOI,文献DOI怎么找? 2530801
邀请新用户注册赠送积分活动 1499593
关于科研通互助平台的介绍 1467788