Fracture prediction in a Swiss cohort

医学 弗雷克斯 骨质疏松症 队列 接收机工作特性 髋部骨折 队列研究 骨质疏松性骨折 物理疗法 内科学 骨矿物
作者
Oliver Lehmann,Olga Mineeva,Dinara Veshchezerova,HansJörg Häuselmann,Laura Guyer,Stephan Reichenbach,Thomas Lehmann,Olga Demler,Judith Everts‐Graber,Mathias Wenger,Sven Oser,Martin Toniolo,Gernot Schmid,Ueli Studer,Hans‐Rudolf Ziswiler,Christian Steiner,Ferdinand Krappel,P. Pancaldi,Maki Kashiwagi,Diana Frey,René Zäch,H. Wéber
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
标识
DOI:10.1093/jbmr/zjae089
摘要

Fracture prediction is essential in managing patients with osteoporosis and is an integral component of many fracture prevention guidelines. We aimed to identify the most relevant clinical fracture risk factors in contemporary populations by training and validating short- and long-term fracture risk prediction models in 2 cohorts. We used traditional and machine learning survival models to predict risks of vertebral, hip, and any fractures on the basis of clinical risk factors, T-scores, and treatment history among participants in a nationwide Swiss Osteoporosis Registry (N = 5944 postmenopausal women, median follow-up of 4.1 yr between January 2015 and October 2022; a total of 1190 fractures during follow-up). The independent validation cohort comprised 5474 postmenopausal women from the UK Biobank with 290 incident fractures during follow-up. Uno's C-index and the time-dependent area under the receiver operating characteristics curve were calculated to evaluate the performance of different machine learning models (Random survival forest and eXtreme Gradient Boosting). In the independent validation set, the C-index was 0.74 [0.58, 0.86] for vertebral fractures, 0.83 [0.7, 0.94] for hip fractures, and 0.63 [0.58, 0.69] for any fractures at year 2, and these values further increased for longer estimations of up to 7 yr. In comparison, the 10-yr fracture probability calculated with FRAX Switzerland was 0.60 [0.55, 0.64] for major osteoporotic fractures and 0.62 [0.49, 0.74] for hip fractures. The most important variables identified with Shapley additive explanations values were age, T-scores, and prior fractures, while number of falls was an important predictor of hip fractures. Performances of both traditional and machine learning models showed similar C-indices. We conclude that fracture risk can be improved by including the lumbar spine T-score, trabecular bone score, numbers of falls and recent fractures, and treatment information has a significant impact on fracture prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
付佟秋烟发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
希望天下0贩的0应助lorentzh采纳,获得10
2秒前
ww完成签到,获得积分10
2秒前
2秒前
科研通AI5应助pharmstudent采纳,获得10
3秒前
3秒前
专注凌青发布了新的文献求助10
3秒前
3秒前
3秒前
清沐发布了新的文献求助10
3秒前
4秒前
lfs完成签到 ,获得积分10
4秒前
4秒前
方星发布了新的文献求助10
4秒前
科研通AI5应助nanjiren采纳,获得30
5秒前
6秒前
6秒前
小涂大大完成签到,获得积分10
6秒前
科目三应助晶晶采纳,获得10
6秒前
科研通AI5应助无限小霜采纳,获得10
7秒前
彼岸发布了新的文献求助10
8秒前
Nzee完成签到,获得积分10
8秒前
8秒前
9秒前
炒米粉完成签到,获得积分10
9秒前
9秒前
zzxcc发布了新的文献求助10
9秒前
ybwei2008_163发布了新的文献求助10
10秒前
动漫大师发布了新的文献求助10
10秒前
小白发布了新的文献求助10
10秒前
平安顺遂发布了新的文献求助10
10秒前
快乐曼荷完成签到,获得积分10
10秒前
wary完成签到,获得积分10
11秒前
劲秉应助hhh采纳,获得10
11秒前
小新发布了新的文献求助10
12秒前
12秒前
ding应助smile采纳,获得10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836