亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An improved model for primary prediction of performance map for turbocharger radial turbine

涡轮增压器 涡轮机 小学(天文学) 计算机科学 工程类 物理 航空航天工程 天体物理学
作者
Mohamed Amine El Hameur,Mahfoudh Cerdoun,Lyes Tarabet
标识
DOI:10.1177/09544070241246836
摘要

In the contemporary landscape, possessing an intricate understanding of the performance characteristics of turbocharger radial turbine proves invaluable during engine development phases, to improve predictive capabilities of calculation codes and enhance the critical process of matching engines with turbochargers. This research deals with offering two precise yet straightforward analytical functions intended to generate comprehensive performance maps of turbocharger turbines. This is achieved through a refined adjustment of a preexisting analytical function, after introducing an inventive multiplication factor that aligns numerical calculations with experimental data to predict the turbine’s expansion ratio. Besides, a second analytical function forecasts the turbine’s thermo-mechanical efficiency by establishing a power balance equation between the turbine and supplied compressor map. The outcome of the developed model is compared with existing method on two distinct turbochargers, encompassing various rotational speeds. Additionally, a sensitive analysis aiming to detect the most important factors affecting our developed model while exploring it possible validity range for different thermodynamic parameters. The results indicate that the two functions yield reliable estimations of turbine performance, with maximum; root mean square error, R 2 , and mean absolute percentage error indices find around 9.47%, 0.993, and 9.03% for the turbine expansion ratio, and about 4.42%, 0.612, and 19.78% for efficiency prediction. This novel model enhances simulation accuracy while preserving user-friendliness and robustness based on the prerequisite of limited geometric and thermodynamic parameters at the turbocharger boundaries. Finally, the main advantages of the proposed model is its adaptability for the implementation in calculation codes, turbomachinery optimization strategies and assessments of the design and performance, addressing scenarios where the original turbine maps are rarely provided by turbocharger manufacturers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
14秒前
美罗培南完成签到,获得积分10
20秒前
乐乐发布了新的文献求助10
20秒前
23秒前
乐乐完成签到,获得积分10
30秒前
ken发布了新的文献求助10
34秒前
orixero应助乐乐采纳,获得10
37秒前
42秒前
tly完成签到,获得积分10
43秒前
48秒前
48秒前
情怀应助qiqi采纳,获得10
49秒前
50秒前
ken完成签到,获得积分10
53秒前
55秒前
57秒前
陶醉的烤鸡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助隐形的迎南采纳,获得10
1分钟前
qiqi发布了新的文献求助10
1分钟前
夏了发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
lovelife完成签到,获得积分10
1分钟前
茶茶完成签到,获得积分10
1分钟前
小炮仗完成签到 ,获得积分10
1分钟前
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
田一发布了新的文献求助10
1分钟前
科研通AI5应助小白菜采纳,获得10
2分钟前
qiqi完成签到,获得积分10
2分钟前
2分钟前
小白菜发布了新的文献求助10
2分钟前
小白菜完成签到,获得积分10
2分钟前
小元发布了新的文献求助20
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081941
关于积分的说明 9169866
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522791
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339