Can transformers transform financial forecasting?

财务 经济 计算机科学
作者
Hugo Gobato Souto,Amir Moradi
出处
期刊:China Finance Review International [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/cfri-01-2024-0032
摘要

Purpose This study aims to critically evaluate the competitiveness of Transformer-based models in financial forecasting, specifically in the context of stock realized volatility forecasting. It seeks to challenge and extend upon the assertions of Zeng et al. (2023) regarding the purported limitations of these models in handling temporal information in financial time series. Design/methodology/approach Employing a robust methodological framework, the study systematically compares a range of Transformer models, including first-generation and advanced iterations like Informer, Autoformer, and PatchTST, against benchmark models (HAR, NBEATSx, NHITS, and TimesNet). The evaluation encompasses 80 different stocks, four error metrics, four statistical tests, and three robustness tests designed to reflect diverse market conditions and data availability scenarios. Findings The research uncovers that while first-generation Transformer models, like TFT, underperform in financial forecasting, second-generation models like Informer, Autoformer, and PatchTST demonstrate remarkable efficacy, especially in scenarios characterized by limited historical data and market volatility. The study also highlights the nuanced performance of these models across different forecasting horizons and error metrics, showcasing their potential as robust tools in financial forecasting, which contradicts the findings of Zeng et al. (2023) Originality/value This paper contributes to the financial forecasting literature by providing a comprehensive analysis of the applicability of Transformer-based models in this domain. It offers new insights into the capabilities of these models, especially their adaptability to different market conditions and forecasting requirements, challenging the existing skepticism created by Zeng et al. (2023) about their utility in financial forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI2S应助张张采纳,获得10
2秒前
玄音发布了新的文献求助10
3秒前
4秒前
个性的海秋完成签到,获得积分20
4秒前
CipherSage应助宝贝采纳,获得10
4秒前
机灵的醉蝶完成签到,获得积分10
4秒前
likw23完成签到,获得积分10
4秒前
Tigher完成签到,获得积分10
5秒前
5秒前
领导范儿应助优雅的琳采纳,获得10
5秒前
6秒前
6秒前
7秒前
爱科研发布了新的文献求助10
7秒前
A吞发布了新的文献求助10
7秒前
P88JNG发布了新的文献求助30
7秒前
tough发布了新的文献求助10
8秒前
酷波er应助sci_zt采纳,获得10
9秒前
9秒前
haowu发布了新的文献求助10
10秒前
10秒前
11秒前
张张完成签到,获得积分20
12秒前
12秒前
A吞完成签到,获得积分20
14秒前
12356完成签到,获得积分10
15秒前
啊懂完成签到,获得积分10
15秒前
15秒前
搜集达人应助学术蝗虫采纳,获得10
15秒前
Godzilla发布了新的文献求助10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123015
求助须知:如何正确求助?哪些是违规求助? 2773481
关于积分的说明 7717912
捐赠科研通 2429036
什么是DOI,文献DOI怎么找? 1290120
科研通“疑难数据库(出版商)”最低求助积分说明 621705
版权声明 600220