Adaptive Model Predictive Control of Four-Wheel Drive Intelligent Electric Vehicles Based on Stability Probability Under Extreme Braking Conditions

汽车工程 控制理论(社会学) 理论(学习稳定性) 电子稳定控制 模型预测控制 控制(管理) 计算机科学 工程类 控制工程 人工智能 机器学习
作者
Zichen Zheng,Shu Wang,Xuan Zhao,Qiang Yu,Haichuan Zhang,Yang Lv,Jia Tian
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tiv.2024.3398129
摘要

Under extreme braking conditions, the sharp decrease in vehicle speed causes the probability of vehicle states to change rapidly between stable and unstable, significantly impacting its overall safety and stability. Concurrently, the intricate nonlinear coupling of the vehicle's longitudinal, lateral, and vertical dynamics poses significant challenges in maintaining stability. To address these challenges and enhance vehicle stability comprehensively, this paper proposes an adaptive stability probability-based model predictive control (ASPMPC) algorithm for four-wheel drive intelligent electric vehicles. This algorithm aims to mitigate the safety risks associated with speed changes and redundant control. Initially, a driving simulator is utilized to gather vehicle stability data, which is then categorized into four states–stable, trending stable, trending unstable, and unstable–using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. This categorization forms the basis of a stable dataset. Subsequently, this dataset is used to train a one-dimensional convolutional neural network (1D-CNN), generating a real-time stability probability spectrum. Then, based on model predictive control framework, a correlation function of control objective weight factors is established according to the real-time stability probability of the vehicle. This enables dynamics adjustment of the vehicle's longitudinal, lateral, and vertical stability under extreme braking conditions. Simulations and hardware-in-loop tests have demonstrated that ASPMPC outperforms existing methods, minimizing errors in lateral velocity, yaw rate, and roll angle, thus enhancing maneuverability and safety under extreme braking conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助HUHU采纳,获得10
刚刚
唐唐完成签到,获得积分10
刚刚
细腻慕儿完成签到 ,获得积分10
1秒前
sunshine完成签到 ,获得积分10
1秒前
cqsuper完成签到,获得积分10
1秒前
Ring完成签到 ,获得积分10
4秒前
bensonyang1013完成签到 ,获得积分10
5秒前
李健应助fffff采纳,获得10
6秒前
6秒前
靓丽安双完成签到 ,获得积分10
7秒前
清沐完成签到 ,获得积分10
7秒前
欢呼的凌兰完成签到,获得积分10
8秒前
HUHU完成签到,获得积分20
8秒前
9秒前
ws完成签到,获得积分20
10秒前
ori完成签到,获得积分10
12秒前
13秒前
papa完成签到,获得积分10
13秒前
wlqc完成签到,获得积分10
13秒前
打打应助小新小新采纳,获得10
15秒前
AFF完成签到,获得积分10
15秒前
拾柒发布了新的文献求助10
16秒前
打打应助谭平采纳,获得10
21秒前
松子完成签到,获得积分10
22秒前
222完成签到 ,获得积分10
23秒前
yoyofun完成签到 ,获得积分10
29秒前
凉的白开完成签到,获得积分10
29秒前
35秒前
shuke完成签到,获得积分10
35秒前
milk完成签到 ,获得积分10
38秒前
38秒前
39秒前
谭平发布了新的文献求助10
40秒前
111完成签到 ,获得积分10
41秒前
无情的菲鹰完成签到 ,获得积分10
42秒前
ScholarZmm完成签到,获得积分10
42秒前
lisasaguan完成签到,获得积分10
44秒前
ccc完成签到,获得积分10
44秒前
45秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292248
求助须知:如何正确求助?哪些是违规求助? 2928600
关于积分的说明 8437788
捐赠科研通 2600642
什么是DOI,文献DOI怎么找? 1419174
科研通“疑难数据库(出版商)”最低求助积分说明 660247
邀请新用户注册赠送积分活动 642906