SeCor: Aligning Semantic and Collaborative Representations by Large Language Models for Next-Point-of-Interest Recommendations

计算机科学 点(几何) 兴趣点 自然语言处理 程序设计语言 情报检索 人工智能 数学 几何学
作者
S. P. Wang,Bohan Xie,Ling Ding,Xiaoying Gao,Jianting Chen,Yang Xiang
标识
DOI:10.1145/3640457.3688124
摘要

The widespread adoption of location-based applications has created a growing demand for point-of-interest (POI) recommendation, which aims to predict a user's next POI based on their historical check-in data and current location. However, existing methods often struggle to capture the intricate relationships within check-in data. This is largely due to their limitations in representing temporal and spatial information and underutilizing rich semantic features. While large language models (LLMs) offer powerful semantic comprehension to solve them, they are limited by hallucination and the inability to incorporate global collaborative information. To address these issues, we propose a novel method SeCor, which treats POI recommendation as a multi-modal task and integrates semantic and collaborative representations to form an efficient hybrid encoding. SeCor first employs a basic collaborative filtering model to mine interaction features. These embeddings, as one modal information, are fed into LLM to align with semantic representation, leading to efficient hybrid embeddings. To mitigate the hallucination, SeCor recommends based on the hybrid embeddings rather than directly using the LLM's output text. Extensive experiments on three public real-world datasets show that SeCor outperforms all baselines, achieving improved recommendation performance by effectively integrating collaborative and semantic information through LLMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
风趣的惜天完成签到 ,获得积分10
2秒前
3秒前
科研通AI2S应助ZXH采纳,获得10
5秒前
龙龍泷完成签到,获得积分10
6秒前
Orange应助小蝶采纳,获得10
6秒前
7秒前
完美世界应助YK采纳,获得10
7秒前
长命百岁完成签到 ,获得积分10
7秒前
碧空完成签到,获得积分10
8秒前
TOTORO完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
彭于晏应助大有阳光采纳,获得10
11秒前
11秒前
wumolijun完成签到,获得积分20
11秒前
自信的以旋完成签到,获得积分10
12秒前
羊羊羊发布了新的文献求助10
12秒前
HJ002完成签到,获得积分20
13秒前
miao发布了新的文献求助10
14秒前
领导范儿应助千逐采纳,获得10
15秒前
15秒前
大有阳光完成签到,获得积分10
17秒前
YK发布了新的文献求助10
17秒前
悦耳易发布了新的文献求助10
17秒前
17秒前
玖月发布了新的文献求助10
18秒前
garlic完成签到,获得积分10
18秒前
18秒前
预言烨完成签到,获得积分10
18秒前
19秒前
19秒前
ZXH发布了新的文献求助10
19秒前
Liar应助大胆海瑶采纳,获得20
21秒前
21秒前
Niar完成签到 ,获得积分10
22秒前
远山完成签到,获得积分10
23秒前
hui发布了新的文献求助30
23秒前
大有阳光发布了新的文献求助10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258508
求助须知:如何正确求助?哪些是违规求助? 2900361
关于积分的说明 8309903
捐赠科研通 2569594
什么是DOI,文献DOI怎么找? 1395833
科研通“疑难数据库(出版商)”最低求助积分说明 653314
邀请新用户注册赠送积分活动 631201