古生代
生物集群灭绝
古生物学
白垩纪
车身平面图
谱系(遗传)
活化石
生物
中生代
生态学
锥齿鲨属
生物扩散
渔业
胚胎
人口
生物化学
人口学
少年
构造盆地
社会学
基因
作者
Chase Doran Brownstein,Thomas J. Near,Richard P. Dearden
标识
DOI:10.1098/rspb.2024.1824
摘要
Among cartilaginous fishes, Holocephali represents the species-depauperate, morphologically conservative sister to sharks, rays and skates and the last survivor of a once far greater Palaeozoic and Mesozoic diversity. Currently, holocephalan diversity is concentrated in deep-sea species, suggesting that this lineage might contain relictual diversity that now persists in the ocean depths. However, the relationships of living holocephalans to their extinct relatives and the timescale of their diversification remain unclear. Here, we reconstruct the evolutionary history of holocephalans using comprehensive morphological and DNA sequence datasets. Our results suggest that crown holocephalans entered and diversified in deep (below 1000 m) ocean waters after the Cretaceous–Palaeogene mass extinction, contrasting with the hypothesis that this ecosystem has acted as a refugium of ancient cartilaginous fishes. These invasions were decoupled from the evolution of key features of the holocephalan body plan, including crushing dentition, a single frontal clasper, and holostylic jaw suspension, during the Palaeozoic Era. However, these invasions considerably postdated the appearance of extant holocephalan families 150 million years ago during a major period of biotic turnover in oceans termed the Mesozoic Marine Revolution. These results clarify the origins of living holocephalans as the recent diversification of a single surviving clade among numerous Palaeozoic lineages.
科研通智能强力驱动
Strongly Powered by AbleSci AI