亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cost-effective classification of tool wear with transfer learning based on tool vibration for hard turning processes

学习迁移 振动 计算机科学 机械工程 工程类 机器学习 人工智能 声学 物理
作者
Amirabbas Bahador,Chunling Du,Hwee Ping Ng,Nurul Atiqah Dzulqarnain,Choon Lim Ho
出处
期刊:Measurement [Elsevier]
卷期号:201: 111701-111701 被引量:38
标识
DOI:10.1016/j.measurement.2022.111701
摘要

• A novel application of transfer learning for tool wear detection in turning processes using one-dimensional (1D) convolutional neural network (CNN). • Transfer learning of a source model for tool wear detection to a new CNC turning machine using new parameters. • Applications of low-cost MEMS and IEPE accelerometers in tool wear detection. • Evaluation of the performance of low-cost MEMS accelerometers in transfer learning. • Transfer learning using significantly smaller amount of vibration data for the target model in tool wear detection. This paper presents a novel application of transfer learning for tool wear detection in turning processes using one-dimensional (1D) convolutional neural network (CNN). The work also investigates the applications of low-cost MEMS as well as IEPE accelerometers in tool wear detection. Tool wear detection is performed using a classification method in which two classes of tool wear sizes are defined: class one and class two which correspond to tool wear sizes smaller or equal to 0.1 mm and bigger than 0.1 mm respectively. The advantage of transfer learning is that it utilizes knowledge from previously learned tasks and applies them to the related ones. In the case of CNC machines, tool wear mechanism in the turning process and the working principles are similar thus, transfer learning can be used to generalize the specific cutting condition to a broader use case. The transfer learning model in this paper uses a pretrained tool wear prediction model which was composed of 1D CNN layers with full connection layers and sufficient amount of data on a source CNC machine. The CNN layers of the pretrained model are frozen at first and then the full connection layers are trained with the new data from the target CNC machine with different cutting insert types. In this study, the application of transfer learning in tool wear size classification showed that the pretrained tool wear detection models can be transferred to other similar processes while maintaining a high accuracy. The accuracy of the transfer learning model was evaluated by comparing it with the results of a model developed from scratch using only the target machine data. It is demonstrated that the transfer learning maintained an accuracy of higher than 80%. In addition to this, the transfer learning model significantly increased the tool wear classification accuracy using the single-axis low-cost MEMS accelerometer from 58% to 85%. Moreover, the tool wear classification model using transfer learning significantly reduced the amount of data required for model development. To evaluate this, the accuracy of the transfer learning model was tested by further reducing the amount of the training data by maximum 80% and the model still showed an accuracy higher or equal to 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助顺利甜瓜采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
50秒前
大胆菲音发布了新的文献求助30
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研蓝月发布了新的文献求助150
4分钟前
4分钟前
科研蓝月完成签到,获得积分10
4分钟前
4分钟前
我亦化身东海去完成签到,获得积分10
5分钟前
打打应助我亦化身东海去采纳,获得10
5分钟前
pursu发布了新的文献求助10
5分钟前
愉快的犀牛完成签到 ,获得积分10
5分钟前
Dengjia完成签到,获得积分20
5分钟前
Weiyu完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
TXZ06完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
8分钟前
8分钟前
共享精神应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
顺利甜瓜发布了新的文献求助10
8分钟前
鲤鱼山人完成签到 ,获得积分10
8分钟前
顺利甜瓜完成签到,获得积分10
8分钟前
张来完成签到 ,获得积分10
9分钟前
洒脱完成签到,获得积分10
9分钟前
AA完成签到 ,获得积分10
9分钟前
9分钟前
陈宇发布了新的文献求助10
9分钟前
orixero应助陈宇采纳,获得10
10分钟前
陈宇完成签到,获得积分10
10分钟前
duan完成签到 ,获得积分10
10分钟前
点点完成签到 ,获得积分10
10分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
12分钟前
12分钟前
杜鑫鹏发布了新的文献求助10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357315
求助须知:如何正确求助?哪些是违规求助? 4488736
关于积分的说明 13972488
捐赠科研通 4389979
什么是DOI,文献DOI怎么找? 2411784
邀请新用户注册赠送积分活动 1404374
关于科研通互助平台的介绍 1378621