Cost-effective classification of tool wear with transfer learning based on tool vibration for hard turning processes

学习迁移 振动 计算机科学 机械工程 工程类 机器学习 人工智能 声学 物理
作者
Amirabbas Bahador
出处
期刊:Measurement [Elsevier BV]
卷期号:201: 111701-111701 被引量:17
标识
DOI:10.1016/j.measurement.2022.111701
摘要

• A novel application of transfer learning for tool wear detection in turning processes using one-dimensional (1D) convolutional neural network (CNN). • Transfer learning of a source model for tool wear detection to a new CNC turning machine using new parameters. • Applications of low-cost MEMS and IEPE accelerometers in tool wear detection. • Evaluation of the performance of low-cost MEMS accelerometers in transfer learning. • Transfer learning using significantly smaller amount of vibration data for the target model in tool wear detection. This paper presents a novel application of transfer learning for tool wear detection in turning processes using one-dimensional (1D) convolutional neural network (CNN). The work also investigates the applications of low-cost MEMS as well as IEPE accelerometers in tool wear detection. Tool wear detection is performed using a classification method in which two classes of tool wear sizes are defined: class one and class two which correspond to tool wear sizes smaller or equal to 0.1 mm and bigger than 0.1 mm respectively. The advantage of transfer learning is that it utilizes knowledge from previously learned tasks and applies them to the related ones. In the case of CNC machines, tool wear mechanism in the turning process and the working principles are similar thus, transfer learning can be used to generalize the specific cutting condition to a broader use case. The transfer learning model in this paper uses a pretrained tool wear prediction model which was composed of 1D CNN layers with full connection layers and sufficient amount of data on a source CNC machine. The CNN layers of the pretrained model are frozen at first and then the full connection layers are trained with the new data from the target CNC machine with different cutting insert types. In this study, the application of transfer learning in tool wear size classification showed that the pretrained tool wear detection models can be transferred to other similar processes while maintaining a high accuracy. The accuracy of the transfer learning model was evaluated by comparing it with the results of a model developed from scratch using only the target machine data. It is demonstrated that the transfer learning maintained an accuracy of higher than 80%. In addition to this, the transfer learning model significantly increased the tool wear classification accuracy using the single-axis low-cost MEMS accelerometer from 58% to 85%. Moreover, the tool wear classification model using transfer learning significantly reduced the amount of data required for model development. To evaluate this, the accuracy of the transfer learning model was tested by further reducing the amount of the training data by maximum 80% and the model still showed an accuracy higher or equal to 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凉凉应助博修采纳,获得10
1秒前
皛鱼应助扭一扭泡一泡采纳,获得10
1秒前
草履虫完成签到,获得积分10
1秒前
Hello应助27采纳,获得10
2秒前
爱吃菠萝蜜完成签到,获得积分10
2秒前
zhengzhao完成签到,获得积分10
2秒前
rover完成签到 ,获得积分10
2秒前
3秒前
3秒前
102755发布了新的文献求助10
3秒前
歪歪完成签到,获得积分10
3秒前
haly完成签到 ,获得积分10
4秒前
illiterate完成签到,获得积分10
4秒前
研友_Y59785完成签到,获得积分0
4秒前
111完成签到,获得积分20
4秒前
飘逸数据线完成签到,获得积分10
4秒前
小泓完成签到,获得积分10
4秒前
阿木木完成签到,获得积分10
5秒前
Kalmia完成签到,获得积分10
5秒前
meme发布了新的文献求助10
5秒前
调皮的达完成签到,获得积分10
5秒前
许鸽完成签到,获得积分10
6秒前
生言生语完成签到,获得积分10
6秒前
尼克拉倒完成签到,获得积分10
6秒前
郭翔完成签到,获得积分10
6秒前
llly完成签到,获得积分10
7秒前
超级的妙晴完成签到 ,获得积分10
7秒前
mudiboyang完成签到,获得积分10
7秒前
壶壶壶完成签到 ,获得积分10
7秒前
四月想毕业完成签到,获得积分10
7秒前
8秒前
坚强幼晴完成签到,获得积分10
8秒前
滴滴哒完成签到,获得积分10
8秒前
8秒前
cyy1226发布了新的文献求助10
9秒前
田田田完成签到,获得积分10
9秒前
Liao完成签到,获得积分10
10秒前
茉莉园完成签到,获得积分10
10秒前
安古妮稀完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259