Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer’s disease diagnosis

人工智能 卷积神经网络 不对称 神经心理学 海马结构 计算机科学 阿尔茨海默病 神经科学 心理学 医学 病理 疾病 物理 认知 量子力学
作者
Aojie Li,Fan Li,Farzaneh Elahifasaee,Manhua Liu,Lichi Zhang
出处
期刊:Brain Imaging and Behavior [Springer Nature]
卷期号:15 (5): 2330-2339 被引量:37
标识
DOI:10.1007/s11682-020-00427-y
摘要

Hippocampal atrophy is often considered as one of the important biomarkers for early diagnosis of Alzheimer’s disease (AD), which is an irreversible neurodegenerative disorder. Traditional methods for hippocampus analysis usually computed the shape and volume features from structural Magnetic Resonance Image (sMRI) for the computer-aided diagnosis of AD as well as its prodromal stage, i.e., mild cognitive impairment (MCI). Motivated by the success of deep learning, this paper proposes a deep learning method with the multi-channel cascaded convolutional neural networks (CNNs) to gradually learn the combined hierarchical representations of hippocampal shapes and asymmetries from the binary hippocampal masks for AD classification. First, image segmentation is performed to generate the bilateral hippocampus binary masks for each subject and the mask difference is obtained by subtracting them. Second, multi-channel 3D CNNs are individually constructed on the hippocampus masks and mask differences to extract features of hippocampal shapes and asymmetries for classification. Third, a 2D CNN is cascaded on the 3D CNNs to learn high-level correlation features. Finally, the features learned by multi-channel and cascaded CNNs are combined with a fully connected layer followed by a softmax classifier for disease classification. The proposed method can gradually learn the combined hierarchical features of hippocampal shapes and asymmetries to enhance the classification. Our method is verified on the baseline sMRIs from 807 subjects including 194 AD patients, 397 MCI (164 progressive MCI (pMCI) + 233 stable MCI (sMCI)), and 216 normal controls (NC) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrate that the proposed method achieves an AUC (Area Under the ROC Curve) of 88.4%, 74.6% and 71.9% for AD vs. NC, MCI vs. NC and pMCI vs. sMCI classifications, respectively. It proves the promising classification performance and also shows that both hippocampal shape and asymmetry are helpful for AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性的丹亦完成签到,获得积分10
刚刚
托尔斯泰发布了新的文献求助10
刚刚
幸福的蓝血完成签到,获得积分10
1秒前
DY完成签到,获得积分10
1秒前
好好好好好完成签到,获得积分10
1秒前
kid1412完成签到 ,获得积分10
2秒前
REBACK发布了新的文献求助10
2秒前
机智的靖琪完成签到,获得积分10
2秒前
labordoc完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助10
3秒前
yaoyao发布了新的文献求助10
3秒前
萌神的救赎完成签到,获得积分10
4秒前
蔚欢完成签到 ,获得积分10
4秒前
魔幻的访卉完成签到 ,获得积分10
4秒前
郑雨霏完成签到,获得积分10
4秒前
susu完成签到 ,获得积分10
5秒前
文光完成签到,获得积分10
5秒前
研究啥完成签到,获得积分10
5秒前
欢喜麻雀完成签到,获得积分10
5秒前
LYL发布了新的文献求助10
5秒前
6秒前
夏冰完成签到,获得积分10
6秒前
7秒前
shiyu完成签到,获得积分10
7秒前
Ion发布了新的文献求助30
7秒前
icerell完成签到,获得积分10
7秒前
科目三应助xyz采纳,获得10
7秒前
乐乐应助yankeyu200005采纳,获得10
8秒前
周二完成签到 ,获得积分10
8秒前
cindy完成签到,获得积分10
8秒前
卿久久完成签到,获得积分10
9秒前
无敌娜完成签到,获得积分10
9秒前
李爱国应助abc123采纳,获得10
9秒前
vicky发布了新的文献求助10
9秒前
许自通完成签到,获得积分10
9秒前
10秒前
科研小白完成签到,获得积分10
10秒前
CDY完成签到,获得积分10
10秒前
喜悦的白开水完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539582
求助须知:如何正确求助?哪些是违规求助? 3117244
关于积分的说明 9329500
捐赠科研通 2814939
什么是DOI,文献DOI怎么找? 1547364
邀请新用户注册赠送积分活动 720872
科研通“疑难数据库(出版商)”最低求助积分说明 712333